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Abstract

The goal of this research effort is to investigate the analysis, design, integration,

testing, and validation of a complete star tracker and star field simulator system

concept for AFIT’s satellite simulator, SimSat. Previous research has shown that

while laboratory-based satellite simulators benefit from star trackers, the approach of

designing the star field can contribute significant error if the star field is generated

on a flat surface. To facilitate a star pattern that better represents a celestial sky, a

partially hemispherical dome surface is suspended above SimSat and populated with

a system of light emitting diodes of various intensities and angles of separation. Test

results show that the spherical star pattern surface is effective in minimizing the effects

of parallax when imaging in a finite conjugate mode and that more reliable attitude

information within 1 degree of accuracy can be attained. The added capability to

research star pattern recognition and attitude determination algorithms in the future

is also significant.
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Development of a star tracker-based reference system

for accurate attitude determination of a simulated

spacecraft

I. Introduction

1.1 Background

Attitude determination is a key component of spacecraft operations, especially

in applications requiring positioning and pointing accuracy. A satellite’s (generalized

as a “spacecraft” or “vehicle” in this thesis) attitude is defined as the orientation of

its fixed body frame with respect to an external reference frame, typically an inertial

frame. Attitude determination is the process by which the spacecraft utilizes either

internal and/or external sensory information to estimate its attitude. Depending on

its mission, a spacecraft may be required to point a camera, sensor, or communica-

tions equipment towards a specific planetary or celestial location. Another concurrent

application is the need for a satellite to point its solar panel arrays towards the sun

and its thermal radiators away from the sun. With multiple, simultaneous, and often

precise pointing requirements for modern spacecraft, the need for a timely, accurate

attitude solution has been a catalyst for increased interest in attitude determination

since the dawn of the space age. Without accurate attitude determination, a “Lost-

in-Space” case may develop, whereby a loss of dependable attitude information can

result in precision pointing failure, loss of power and, in extreme cases, the spacecraft

tumbling uncontrollably in space.

Several attitude determination methods have been developed since the inception

of spaceflight. Aside from the many internal sources of attitude information, such as

inertial or gyroscopic measurement methods, the space environment provides numer-

1



ous external references from which the attitude of a spacecraft may be compared to

and ultimately determined. The known position of the sun and moon, relative to the

spacecraft and to the Earth, may be used for a satellite in orbit. The magnetic field

of the Earth can also be measured and used to estimate the spacecraft’s attitude.

However, the sun and moon are generally not in permanent view of an orbiting satel-

lite, and utilizing the magnetic field of the Earth for attitude determination is not an

accurate method. The celestial sky, however, is visible the majority of the time.

Determining a spacecraft’s attitude using the celestial sky is facilitated using

vector observations of stars relative to the spacecraft. Specially-designed sensor hard-

ware, known as star trackers or star sensors, detect stars in a portion of the celestial

sky, record specific features of these stars, and report a sensor-fixed direction vector

to the detected stars. Comparing these vectors to premeasured, inertial-fixed vectors

is central to the various attitude determination algorithms developed over the years.

The star data collected between the two observations must typically first be matched

in order to identify the portion of the celestial sky the sensor recently imaged. Then,

orientation information is determined from this matching that allows the star tracker

to report a best-estimated attitude solution for the spacecraft.

However, star tracking is not completely independent of measurement noise,

both systematic and non systematic, which contributes appreciable errors in mea-

surement and to which much research has been dedicated. Various star tracker sensor

types and configurations have been developed to both improve the overall accuracy

of the star tracker and allow the numerous end-users with flexibility in choosing the

particular variant that best suites their mission applications. Additionally, the algo-

rithms tasked with identifying stars and determining attitude solutions are designed

to facilitate or mitigate applied error estimates to guarantee a solution exists with

varying degrees of accuracy. The degree of accuracy then depends on the noise and
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distortions related to the imaging optics, sensor, and algorithms used. There is a large

choice of algorithms to incorporate in a star tracker system (20, 22, 5), each with char-

acteristic operating parameters and associated advantages and disadvantages. While

improved methods for pattern recognition and attitude determination have resulted

over the course of four decades of study, algorithms with increased accuracy are typ-

ically more computationally expensive, and thus a balance is usually sought between

the desired accuracy versus the system-level requirements to facilitate the increased

computations.

In light of the relatively small inherent error associated with star trackers, star

trackers are an obvious choice for application onto modern laboratory-based space-

craft dynamics simulators. Indeed, a sun sensor-based system would be the simplest

to implement, but would only provide one reference vector which limits the space-

craft’s ability to determine its orientation. A magnetometer, while sufficiently ac-

curate, would require construction of an all-encompassing Helmholtz cage or simi-

lar magnetic field device around the spacecraft simulator. On the other hand, star

trackers inherently provide the minimally-required two reference vectors. Since such

simulators exhibit a limited range of orientations, the required star field surface need

only be sized to provide coverage over the portion of possible simulator orientations.

Furthermore, research simulators allow a large degree of flexibility with regards to

accuracy requirements for its on-board sensors. Thus, implementing a star tracker-

based external reference system only requires the installation of an additional sensor,

a properly-designed, minimally-intrusive star field surface, and the proper software

algorithms.
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Figure 1: SimSat II Current Configuration

1.2 Problem Statement

The Air Force Institute of Technology’s (AFIT’s) spacecraft attitude dynamics

simulator, SimSat, is used for hardware-in-the-loop validation of new satellite control

algorithms. SimSat determines if it s maintaining a commanded attitude by using

feedback sensory information from an on-board Inertial Measurement Unit (IMU),

which is prone to gyroscopic precession resulting in loss of accurate attitude infor-

mation. To provide external estimation of attitude information necessary to test the

latest satellite control algorithms, SimSat needs an additional attitude reference sys-

tem of a different form. While several options for reference systems were considered,

a star tracker-based system providing an external reference was implemented to meet

this need for a laboratory-scaled configuration.
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1.3 Research Objectives

The objectives of this research effort are to investigate the critical parameters

for a lab-scale star-tracker based external reference system for AFIT’s SimSat, inte-

grate a working concept of it within the current SimSat laboratory, and characterize

the performance of the concept system through initial validation testing against key

algorithmic requirements later identified in Section 3.2. The overall goal of this re-

search effort is to provide SimSat with a preliminary working concept of a unique

star tracker-based external reference system to act as an initial point for subsequent

research towards a precise, accurate, and robust final solution.

1.4 Methodology

The research methodology was designed to parallel the analysis of space-rated

star trackers as much as possible. Preliminary research focused on the key operational

requirements of star trackers. The star tracker sensor and optics configuration was nar-

rowed to an industrial Machine-Vision camera. Next, the study and development of

the representative star field was composed of two portions: the star-emulation method

and the star field surface method. light emitting diode (LED)s where chosen as the

star-representative hardware, which was analyzed with regards to their performance

when coupled with the selected camera hardware. A final physical configuration was

then conceptualized and analyzed for the LEDs. The star field surface was selected to

be spherical based on lessons learned from previous research as well as additional sur-

face analysis conducted in this research effort. Both portions were tested via on-board

star tracker image collection tests to validate the conceptual approaches discussed in

this research. Finally, the pattern recognition and attitude determination algorithms

required to validate the complete concept system were coded into Matlab® and

executed during subsequent SimSat testing to produce estimated attitude solutions
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compared against SimSat’s existing attitude sensor. The Angle method for star pat-

tern recognition and the Quaternion Estimation (QUEST) algorithm for attitude

determination were utilized in this research.

1.5 Preview

Chapter II consists of a literature review of related topics used in this research,

including spacecraft attitude determination, spacecraft dynamics, star tracker oper-

ation, star pattern recognition and attitude determination algorithms, and contem-

porary examples of laboratory star tracker testing and spacecraft simulators. The

analysis, design, integration, and testing of the concept reference system is covered

in Chapter III. Chapter IV presents the results and analysis of the validation testing

performed on the external reference system using SimSat. Finally, Chapter V presents

the conclusions of this research and recommendations for future work.
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II. Background

2.1 Spacecraft Attitude Determination

Spacecraft attitude determination may be separated into two phases: Attitude

Knowledge Acquisition, where spacecraft attitude is determined given little or no a

priori attitude-related information, and Normal Mode Attitude Determination, where

updates and refinements of existing attitude estimates are made. The first phase oc-

curs at the beginning of the mission or after a fault results in lost or unreliable attitude

data. The second phase occurs routinely throughout the mission (14). Many different

devices exist for modern spacecraft that are capable of estimating the vehicle’s atti-

tude with varying degrees of reliability, accuracy, and computational efficiency. Sun

and moon sensors can be used for attitude determination, but either body must be in

view of the spacecraft. Earth-pointing spacecraft can use horizon sensors to determine

their attitude, at the cost of being limited to a geosynchronous orbit or lower (25).

Magnetometers, which measure Earth’s magnetic field, can similarly be used. While

indispensable in many applications, however, sun sensors and magnetometers suffer

from relatively poor accuracy (maximum of 0.1 degrees) (22).

There is a general consensus in the literature that star trackers, sometimes

known as star sensors or star cameras, are the most accurate instruments for space-

craft attitude determination (7). Star trackers are photodetector-based devices that

collect images of stars and report the imaged star’s vehicle-referenced direction vector

and magnitude information. This information is then processed, either on-board or

remotely, to determine the orientation of the spacecraft relative to an inertial reference

frame. Two reference points are needed, in general, to fully determine the attitude

of a spacecraft (25). Indeed, with a continuum of stars populating the celestial sky,

numerous stars are always within view of a spacecraft at any given time, providing for

multiple direction vectors (and thus, reference points). Furthermore, unlike special-
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ized sensors for the sun, moon, and horizon, this also allows for a source of attitude

information relatively independent of the spacecraft’s current orientation (14). Fig-

ure 2 illustrates the basic principle of star tracker utilization, where A is the attitude

solution determined after processing the star tracker-collected imagery.

Figure 2: Relation Between the Celestial Sphere and a Spacecraft Reference Frame (7)

Although a variety of attitude determination methods have been developed over

the years, they all follow the same basic process (20). Figure 3 shows the flow of a

typical image-based star tracker attitude determination process. Attitude determina-

tion begins with algorithms that capture and process star pattern images in order to

calculate star tracker-framed vectors to the locations of observed stars. Once these

vectors are computed, a star pattern recognition algorithm will find the matching

inertial-frame vectors from a database, or catalog, of stars to the input star tracker

vectors. Later, the attitude determination algorithm calculates a transformation that

maps the tracked vectors to the inertial-frame vectors, at which point the spacecraft’s

attitude can be determined. Star pattern recognition is also known as “Star-ID” (20).

In a parallel to the two generalized attitude determination phases discussed

earlier in this section, all star tracker-related algorithms fall into two categories: Lost

in Space (LIS), in which no a priori spacecraft attitude information is available, and

recursive, in which some attitude information is known. A common property of these
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Figure 3: Typical Attitude Determination Process Flowchart (20)

algorithms is the extraction of specific features and parameters from each image. In

many cases, these are the inter-star angles, or the interior angle between the position

vectors of two imaged stars in the camera’s reference frame, and star brightnesses to

distinguish between stars within a pattern.

A subcategory of both the LIS and recursive categories is the Non-Dimensional

algorithm, in which, for example, the precise angular star separations are not needed

but instead are normalized so that poor/time-varying camera calibrations are com-

pensated for (20). It has been shown that, for certain non-dimensional algorithms, star

pattern recognition and attitude determination can be performed simultaneously (8).

Two major decisions are also documented: whether or not to use ordinal, or sorted,

star pattern features, such as brightness or distance, as algorithmic constraints (20).

The discussion of selected algorithms continues in detail in Section 2.4 and Section 2.5.

2.2 Spacecraft Dynamics

2.2.1 Reference Frames. Vector observation is the core mechanism that facil-

itates attitude determination through star tracking. Vectors to the same objects, mea-

sured at different times and from different locations, are compared and filtered. The

resulting differences between these vectors forms the information used to determine
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the attitude of the spacecraft. Such vector observations are made from vastly differ-

ent locations and with respect to different coordinate references frames (also known

as coordinate frames, or simply shortened to “frames”). The coordinate frames used

in this research are the star tracker, body-fixed, and Earth-Centered Inertial (ECI)

frames.

The ECI frame is fixed in inertial space and centered on the Earth. Its X-axis

is in the vernal equinox direction and aligned with the radial vector from the Sun

to the Earth, known also as the “Line of Aries” (5). The Z-axis is aligned with the

Earth’s rotation axis and perpendicular to the equatorial plane. The Y-axis completes

an orthogonal, right-handed frame. The body-fixed (or shortened to “body”) frame

is non-inertial and fixed to the satellite. The body frame is generally located at the

center of mass of the vehicle, and the axis are aligned with the vehicle’s principle

axis. Figure 4 is an illustration of the ECI frame and the body frame of an orbiting

satellite.

Figure 4: Earth-Centered Inertial and Body-Fixed Frames (20)
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All star observations by the star tracker are initially mapped with respect to the

star tracker reference frame. The star tracker frame is a three-axis, orthogonal system.

Typically, two of the axes are parallel with the horizontal and vertical components

of the image plane, and the third axis is aligned with respect to the star tracker

boresight. This research uses the the star tracker/image plane coordinate relationship

shown in Fig. 5.

x 

y 

z 

zimage 

yimage 

Tracker Frame 

Image Plane 

Figure 5: Observed Stars in the Tracker Frame

2.2.2 Rotation Matrices. Vector observations of stars made from Earth are

typically measured with respect to the ECI frame, then stored in a star catalog. To

compare the two sets of vector measurements requires that the tracker frame vectors

be represented in the ECI frame through application of a rotation matrix Rit, where

the superscript it is read as “star tracker frame to inertial frame”. A similar rotation

can be performed on the ECI frame into the tracker frame, where this rotation matrix

is represented as Rti. Mapping the vectors from the inertial frame,
→
v
{̂i}

, to the tracker
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frame,
→
v
{ŝ}

, occurs through a vector multiplication in the form of

→
v
{t̂}

= Rti →v
{̂i}

(1)

There are several sets of parameters from which rotation matrices may be constructed

from. The simplest form is through use of Euler Angles, which describe one or more

rotations through corresponding angles about specified axes. The 18th century mathe-

matician Leonhard Euler first suggested the use of a sequence of three simple rotations

about a set of mutually orthogonal axes to describe the orientation of an orbital plane

with respect to an inertial frame (21). While various sequences are used and best suited

for different applications, this research uses the “3-2-1” sequence, where each number

designates the order of the rotation axis. Figure 6 is a sketch of a 3-2-1 rotation from

the inertial frame to the tracker frame, where {̂i} and {ŝ} represent the inertial and

star tracker frame axis systems, respectively. The intermediate locations of the {̂i}

frame basis vectors are represented by {̂i′} and {̂i′′}. The Euler Angles, θn, represent

the rotation angle, with their subscripts n designating their order of application.

Each rotation in a sequence is represented by its own rotation matrix. Without

derivation, the rotation matrices for a 3-2-1 rotation are

R3(θ1) =


cos (θ1) −sin (θ1) 0

sin (θ1) cos (θ1) 0

0 0 1

 (2)

R2(θ2) =


cos (θ2) 0 sin (θ2)

0 1 0

−sin (θ2) 0 cos (θ2)

 (3)
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q1 

q2 

q3 

ˆ
1i

ˆ
2i

ˆ
3i

ˆ 
1i

3
ˆ i

2
ˆ i

2b̂

2
ˆ i

3
ˆ i

3b̂

1b̂ˆ 
1i

Figure 6: 3-2-1 Rotation Sequence from Inertial to Star Tracker Frame (21)

R1(θ3) =


1 0 0

0 cos (θ3) −sin (θ3)

0 sin (θ3) cos (θ3)

 (4)

Combining these elementary rotations to form the complete rotation matrix, also

known as the direction cosine matrix, involves matrix multiplication from right to

left, as in

Rti = R1(θ3)R2(θ2)R3(θ1) (5)

2.2.3 Quaternions. Because direction cosine matrices apply to vector rota-

tions in general, the Euler Angles that compose a direction cosine matrix can be used

to describe a spacecraft’s attitude. However, the most common way to mathematically

represent a spacecraft’s orientation is through Euler Parameters, or commonly known
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as quaternions. Leonard Euler’s 1776 theorem on rigid body motion established the

mathematical pretext for quaternions, which summarizes as:

In three-dimensional space, any displacement of a rigid body such that a
point on the rigid body remains fixed, is equivalent to a single rotation
about a fixed axis that runs through the fixed point (12).

Euler’s theorem implies that any rigid body rotation can be described in terms of a

rotation angle Φ, known as the Euler angle, about a body-fixed unit vector ê, known

as the Euler axis. This allows for different reference frames to be related by four

parameters: three from ê and one from Φ (21). Figure 7 depicts a rotation about

the Euler axis ê passing through the origin of the reference frame, resulting in pure

rotation from position a to position b.

x{a} 

y{a} 

z{a} 

x{b} 

   y{b} 

z{b} 

   Φ 

Figure 7: Euler Axis Rotation Relating Frame A to Frame B (12)

With the inherent simplicity of the Euler angle/Euler axis attitude parameter-

ization, there is an obvious singularity when the Euler angle Φ is 0, since the Euler

axis is mathematically defined by Φ (21). Similarly, for parameterization using a di-

rection cosine matrix composed of Euler Angles with a 3-2-1 rotation sequence, an

odd multiple of π
2

produces an identity matrix for the 2nd rotation, resulting in sin-

gularity. Such singularities cause computational problems. One method to remove the
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singularity in computational methods is to use quaternions, defined as

q̃ =

 →
q

q4

 =



e1sin
(

Φ
2

)
e2sin

(
Φ
2

)
e3sin

(
Φ
2

)
cos
(

Φ
2

)


(6)

The terms q1, q2, and q3 are the three components of the quaternion vector
→
q . The

fourth term, q4, is a scalar value, and the complete quaternion is denoted by q̃. Using

quaternions, the difference between any two reference frames or orientations can be

described without singularities, even for cases when the two frames are coincident

(12). The difference calculation is a matrix multiplication, and results in the second

orientation being defined in the first. For example, given quaternions ã and b̃ for two

orientations defined in reference frame {̂i}, the difference between ã and b̃ defined

relative to ã is given by

b̃{a} =



a4 a3 −a2 −a1

−a3 a4 a1 −a2

a2 −a1 a4 −a3

a1 a2 a3 a4



T 

b1

b2

b3

b4


(7)

If b̃{a} is [0 0 0 1]T , then ã and b̃ are the same. Equation (7) can be used by the

spacecraft’s attitude control system to calculate the difference between the current

orientation and the desired orientation. It can also be used to compare a calculated

attitude determination solution to attitude measurements made by other means, in-

cluding those derived from star catalogs.
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2.3 Star Tracker Operation

2.3.1 Technical Characteristics. Star trackers are highly sensitive electronic

cameras connected to microcomputers, which receive image data of the celestial sphere

and, depending on the complexity of the associated computing electronics, outputs

usable data in order to finally determine the spacecraft’s attitude. Modern star track-

ers are typically fully autonomous, which minimizes or eliminates interfacing with

external subsystems, thus allowing for the solution of the LIS problem. This means

the star tracker can automatically perform star pattern recognition and determine the

spacecraft’s attitude independently (10). Figure 8 is a component sketch of a modern

star tracker.

Figure 8: Star Tracker Operational Sketch (10)

Star trackers are grouped primarily according to sensor type and/or “genera-

tion” in the literature. The first star trackers developed for spacecraft in the 1950s

and 1960s primarily used photomultiplier or photo-diode sensors, and were capable

of field of view (FOV) of up to 35 degrees, sensitivity to stars of magnitudes up to

5.7, and pointing accuracies in the range of 120 to 10 arcseconds (18). Tracking sta-

bility, temperature, sensitivity to magnetic fields, and high voltage requirements led

to the development of the first Charge-Coupled Device (CCDs) in the 1970s. These

solid-state sensors provided increased image resolution, dimensional stability, photo-
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metric linearity, improved sensitivity near magnitude 7, and accuracy to less than

10 arcseconds (18). Active Pixel Sensor (APSs), which are based on complimentary

metal-oxide semiconductor (CMOS) technology, are the latest photodetector type to

find application in star trackers. Seen as the successor to CCD, APS detectors demon-

strate several advantages over CCD sensors, mainly in lower power operation, on-chip

analog-to-digital integration, lower direct processing costs, anti-blooming, and direct

access to individual pixels, or “windowing” (4). Pointing accuracies of less than one

arcsecond are claimed by the literature (7, 18).

Star trackers categorized by generation are so grouped according to a list of

ever-advancing specifications and capabilities. The sensor type is typically included

as a secondary distinguisher. As an example, sample star trackers may be catego-

rized as “First Generation Pre-CCD” as Smith does, or “Second-Generation CCD”

as Eisenman et al. do (7). Although there are some differences in the literature as to

what classifies a star tracker as first, second, or third-generation, the single most com-

mon differentiator is the ability to operate autonomously. As an example, Eisenman

et al. (7) write on the differences between first and second-generation star trackers:

• Star constellation pattern recognition is performed autonomously uti-
lizing internal catalogs. The solution of the LIS problem is inher-
ent and no external processing nor additional attitude knowledge is
needed for celestial pointing reference determination

• Utilization of a large number of stars in the range of 25 to 85 in
the FOV is done for each data frame. Attitude determination from
internal catalogs of over 25,000 stars is based on a signal which is
effectively larger than in first-generation units. This significantly im-
proves acquisition probabilities and accuracy over the whole sky.

• All compensations, including light time effects, as they apply, are
performed internally.

• Attitude quaternions referenced to inertial space are output directly
without the intervention of external processing (7).
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It was in the 1990’s when powerful microprocessors (> 10 MIPS) and large on-board

memory allowed second-generation star trackers to become the recognized state-of-

the-art (7). Being completely stand-alone, these units were characterized as smaller,

lighter, and less taxing on vehicle interfaces and power, among other parametric im-

provements. Only in recent years have mentions of third and fourth-generation star

trackers been observed in the literature. While fully-autonomous operation is still em-

phasized, improvements in key specifications seems to be the qualifying metric for this

generation of star trackers. Star trackers with multiple sensors or FOVs have been

developed to mitigate boresight twist angle errors and enhance sky coverage (9).

Star tracker performance is dependent on starlight sensitivity, FOV, the internal

star catalog, and star tracker calibration (10, 7). The known sensitivity of the star

tracker sensor, commonly referred to as the Quantum Efficiency (QE), affects the

range of star brightness values the sensor can accurately detect. The QE is the fraction

of the photons converted into photoelectrons on the focal plane of the image sensor

(10). Converting this data to the measured photoelectrons captured per exposure, a

conversion can then be computed to translate this value to the star magnitude values

stored within the star catalog (10). Next, calculation of a star detection threshold,

which is the minimum pixel value the star tracker is set to recognize as a star, is

set to avoid any background noise from collected images. Additional star tracker

characteristics are summarized by Eisenman et al. (7):

FOV

The FOV is arguably the most critical star tracker parameter, and ranges from

a few degrees to 30 degrees diagonally. When the FOV is narrowed, the angular

resolution of a single pixel improves, which results in an increase in pitch and yaw

accuracy. However, even with a narrower FOV, it is always desirable to detect a

given average number of stars in the FOV, so the lens aperture must increase in
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order to allow the star tracker to see fainter stars as compensation. This tends

to increase the mass of the star tracker, due to the increasing optics length.

Consequently, tracking increasingly fainter stars requires an increasingly larger

star catalog, thereby increasing the complexity of the star pattern recognition

algorithm.

According to Liebe (10), assuming that the FOV is circular and FOV degrees

wide, then the fraction of the sky covered by the FOV is

CFOV =
1− cos(FOV/2)

2
(8)

Sky Coverage

Sky coverage is the percentage of the sky over which the star tracker can effec-

tively acquire and track stars. Higher-sensitivity devices will detect more stars

in the sky, thus encountering less regions in the sky where “black-outs”, or lack

of detectable stars, are present.

Mass

The mass of star trackers varies from less than 1 kg to 20 kg. Processing elec-

tronics and optics dominate the mass specification of a star tracker.

Star Catalog Size

The size of the star catalog is dependent on the sensitivity of the system. A larger

star catalog is required for a sensitive system (large aperture, long exposure time,

etc). Resource requirements, such as memory and processing power, increase

with increasing catalog sizes. Therefore, it is undesirable to have large catalogs.

Processor Requirements

Processor requirements are directly related to the extent of onboard data pro-

cessing occurring within the star tracker. Update rates for autonomous star
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trackers are on the order of 1-30 Hz, with required processors in the 10 to

15 MIPS range. Prior-leading examples of second-generation star trackers were

capable of tracking stars and performing pattern recognition in less than two

seconds.

Analog-to-Digital Converter (ADC) Resolution

With large spans in brightness between the dimmest and brightest stars de-

tected, it is usually desirable to utilize higher-resolution ADCs to preserve in-

formation. However, if employing a large number of stars (5̃0) in the star image,

the number of stars requiring a 12-bit ADC is small. Therefore, the few very

bright stars may be discarded, and an 8-bit ADC can be used, which carries a

large computational advantage.

Update Rate

Update rate is the rate at which the spacecraft’s attitude control subsystem

receives the newest attitude information from the star tracker processor. Two

factors affect the update rate: exposure time and processing time for the image.

Longer exposure times drive better signal-to-noise ratios, but attitude control

subsystems are reliant on how well (and quickly) the determined attitude can be

extrapolated to a certain time. Therefore, accuracy and exposure time become

trade-offs. In star trackers with large star catalogs and complex computations,

computation time becomes a major factor. Finally, for rotating spacecraft, it is

necessary for exposure time to be limited to avoid smearing the imaged stars

across a large track, effectively losing sensitivity and accuracy.

2.3.2 Accuracy. The topic of star tracker accuracy has placed much focus

on understanding the sources, effects, and mitigation of measurement errors inherent

to star trackers. There are several classification schemes of star tracker error used
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by leading researchers, each with specific areas of focus and levels of complexity.

Smith’s approach to star tracker distortion estimation and correction is closer to that

of an end-user. As such, the application of the pinhole camera model and the “black-

box” star tracker assumption allowed for the utilization of a simplified scheme of three

error classes: distortion, centroiding error, and noise (18). Eisenman and Liebe, whose

research is centered on building star trackers, lists line of sight (LOS) uncertainty,

optics error, centroiding error, noise equivalent angle (NEA), and algorithmic errors

as error classes (6). All discussions regarding accuracy in this paper will be with

regards to Eisenmanet al.’s broader categorization scheme, described as (7, 6, 18):

FOV LOS uncertainty

Consists of thermal drift, ground calibration residuals, launch effects and grav-

ity release effects. The initial value is measured in a laboratory using precisely-

referenced, simulated stars. The LOS is the most difficult uncertainty to mea-

sure.

NEA

The NEA represents the star tracker’s ability to reproduce the same attitude

when presented with the same star image, and therefore represents the inherent

noise in the unit vectors measured by a star tracker. A noiseless, stationary star

tracker would repeatedly measure the same exact unit vector to a star at all

times. Since real star trackers exhibit inherent noise, a star tracker will measure

a multitude of unit vectors distributed over the true direction. The angular width

of this distribution of vectors is the angular equivalent of the system noise, or

NEA. The NEA is nonsystematic (random).

Optics errors

Optics errors refer to the systematic distortions of the image, including ground

calibration errors, optical distortions, thermal distortions, chromatic variations,
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and point spread function variations over the focal plane. Common effects are

distortion or warping of the sensor plane, which can cause misalignments be-

tween the measured unit vectors and the cataloged vectors.

Centroiding errors

Centroiding introduces errors due to non uniformity in pixel light sensitivity,

quantization error, uncertainty in the centroiding algorithm, and CCD charge

transfer efficiency (CTE). Although defocussing the star images is advantageous

when determining the centroid of an imaged star, spreading the star over too

great of an area will decrease the signal to noise ratio; therefore, a point spread

function of a few pixels is typically chosen (7).

Algorithmic errors

Include time stamp, thresholding, star catalog uncertainties, erroneous star

matches, and algorithmic approximations.

The last four components (NEA, optics errors, centroiding errors, and algorith-

mic errors) are considered the relative accuracy, or the star tracker accuracy, and is a

measure of how well the star tracker can accurately detect changes in attitude. This is

typically measured in static ground tests utilizing the real sky and the Earth’s rotation

(6). Given all the sources of star tracker error, the fundamental limit of star tracker

pointing accuracy is the positional accuracy of the star catalogs to which tracker

measurements are compared. The HIPPARCOS satellite recorded the positions and

brightness of the 120,000 brightest stars with a positional accuracy of 1 milliarcsecond.

This is small compared to the roughly 1 arcsecond accuracies achievable by star track-

ers, so the uncertainties associated with a star’s cataloged true position is negligible

(7).
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2.3.3 Ideal Pinhole Camera. The optical theory of star trackers is similar

to that of cameras and astronomical telescopes (18). However, the analysis of star

tracker operation typically begins with a simplifying assumption that star trackers

behave like an idealized pinhole camera, where rays of light from point-sources travel

in straight lines and pass through the pinhole and onto the sensor focal plane (17).

This assumption neglects any diffraction effects that may occur due to the onboard

optics of the star tracker. Figure 9 illustrates the pinhole camera. One pair of stars,

close to the boresight, is separated by some angle. Another pair, separated by the

same angle, is located farther to the side. The camera’s X-,Y-,Z- coordinate reference

frame is set over the pinhole and behind the pinhole is the projection of the spherical

sky onto the focal plane. Note that the effective FOV of the camera is depicted as

being quite large.

Figure 9: Ideal Pinhole Camera Assumption (18)

From Fig. 9, projecting the stars from the spherical sky to a flat focal plane

results in varying linear separations projected onto the plane (18). However, their

angular separations remain consistent with their focal plane projections, as do the
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angular positions to every star with respect to the camera reference frame (depicted

by the red arc in Fig. 9). Consistency in angular measurement is the key enabler of

vector measurements using star trackers. It also allows for placing of the notional focal

plane at any distance normal to the boresight away from the pinhole, which improves

flexibility of analysis.

2.3.4 Vector Mapping. At the most elementary level, star trackers report the

horizontal and vertical (H, V ) sensor pixel positions of the star image projected onto

the image plane (or, may report angles which are converted to (H,V ). The positions

are determined through the process of centroiding, where the centers of the imaged

stars are calculated by the internal processors in the star tracker (18). For most star

trackers, the star images are slightly defocussed in order to spread each star over

several pixels (7, 18). Resolutions as low as 1/100 of a pixel have been achieved (7).

Figure 10 shows an image from a prototype star tracker. To the right is a close-up

view of one of the stars and the calculated centroid from the star’s pixel area.

Figure 10: Star Image Centroid Illustration (7)
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The tracked stars’ (H,V) pixel coordinates are then transformed to a spatial co-

ordinate system with respect to the star tracker frame, which may or may not include

any error corrections. The tracked star direction in the celestial sphere with respect

to the tracker frame, {t̂}, can then be computed by using (H,V ) and normalizing to

unit vectors. If given a star S reported at (HS,VS), then transformed to (yS,zS) in

the star tracker frame {t̂}, and considering no further distortion or centroiding error

compensations at this point, the tracked star position is

v̂{t̂}s =
[1 yS zS]

‖1 yS zS‖
(9)

The angular distance to the boresight (β) is determined by

β = arctan

√
y2
S + z2

S

1
(10)

Figure 11 illustrates an example with three observed stars in the image and the image

plane projected in front of the tracker reference system at a unit distance. The angle

β is shown for one of the stars. A star at (y0,z0) would map onto the tracker boresight,

and thus on the tracker frame x-axis.

2.4 Star Pattern Recognition Algorithm

2.4.1 Overview. With the necessary star vectors mapped in the star tracker

frame and the accompanying tracked star magnitude information stored, the next step

is to correlate this information to the cataloged data stored on board the spacecraft.

This is especially critical for the LIS case, since star pattern recognition is the common

method applied to solve for this situation (7). There are three steps regarding Star-

ID, with an optional fourth. Figure 12 shows the process for the typical Star-ID

algorithm. First, features, explained in detail in the next paragraph, are extracted
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Figure 11: Mapped Star Vectors in the Tracker Frame

from the set of tracked star vectors and their associated brightness. Second, a search

of the star catalog matches a subset of the observed information with entries in the

database. Third, an estimate is made regarding the probability that the matches are

correct. In the optional fourth step, recursive Star-ID may be implemented, where

the remaining body-frame vectors are identified using a new estimate of spacecraft

attitude. Typically, a variation of the direct match technique is employed in the fourth

step in which stars are identified by their close proximity to their predicted location.

This recursive fourth step is usually much faster than the first two steps, and may be

repeated in succession for additional observations with an a priori attitude estimate

(20).

The feature extraction step will be discussed in this paragraph, including a

sampling of the many algorithms used, such as the angle method, planar triangle

method, and spherical triangle method. The angle method is the simplest algorithm.

The inter-star angle between star pairs is determined from the mapped vectors in the

star tracker frame. Due to the relatively-infinite distances of stars from Earth, the
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Figure 12: Typical Attitude Determination Algorithm Flowchart (20)

angle between star pairs measured with respect to the ECI frame will be the same

as viewed from an Earth-orbiting satellite. While Star-ID using the angle method is

simplistic and requires only two stars in the FOV, the inter-star angle is very sensitive

to noise. Furthermore, unless star brightness is also considered, the measured angles

are the only contributors of uniqueness for the algorithm to match. The algorithm

will require stored or readily-computed inter-star angles between catalog vector pairs

and suitable matching logic to prevent false identifications (22). Figure 13 shows the

angle calculated from a star pair, where the origin is the star tracker reference frame.

Figure 13: Angle Method (5)
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Another Star-ID algorithm is the planar triangles method, as depicted in Fig. 14.

In this method, the area and polar moments of triangles formed from three observed

stars are calculated, providing more identifying information than a star pair angle

alone. As with the angle method, the area and polar moments are invariant with

respect to the ECI or star tracker frame. The improved uniqueness reduces the number

of false identifications, but with a computational and operational cost. A minimum

of three stars is now required in the FOV, additional calculations must be performed,

and more memory must be allocated to store the area and polar moments (22). A

simplified variation of this method is to calculate the interior angles of the triangle

using the Law of Cosines and use these as the Star-ID parameters (5).

Figure 14: Planar Triangles Method (5)

Similar to the planar triangle method, the area and polar moments of the spher-

ical triangle are calculated, providing even more unique identifiers for each star. Fig-

ure 15 illustrates the method. Significant computational complexity is inherent with

this method, especially in recursively determining the polar moment of the spherical

triangle (22). Such complexities increase the attractiveness of the more straightfor-
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ward star pattern recognition methods, specifically the angle method, especially for

cases where high accuracies are not required.

Figure 15: Spherical Triangle Method (5)

2.4.2 Angle Algorithm. After examining various star pattern recognition al-

gorithms based on specific feature extraction methodologies, selecting the most basic

of these algorithms facilitates a preliminary study of star pattern recognition and

attitude determination. While the star tracker system described in this research is

intended for implementation of more advanced algorithms in future research efforts,

the star pattern recognition algorithm under investigation in this research is the angle

method. Therefore, the LIS “Stellar Attitude Acquisition (SAA)” algorithm presented

by Needelman et al. (14) was chosen as the basis for the algorithm implemented and

analyzed in this research effort. The LIS/SAA algorithm is utilized by Boeing for at-

titude determination, and fundamentally closest to van Bezooijen’s “Automated Star

Pattern Recognition” method (14, 20). Simulations and observatory-based ground

testing demonstrated that the algorithm was successful for over 300 tests, with no

observed mis-acquisitions (14). This method relies on two catalogs:
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• Acquisition Star Catalog (ASC) - This is commonly referred to as the star cata-

log. Each entry represents a star, containing information on the star’s position in

the ECI frame and its instrument magnitude. Stars are sorted by their measured

real-sky declination.

• Pair Catalog (PC) - Each entry represents a star pair, where each star is repre-

sented by ASC entries. The PC is organized into buckets, or contiguous groups

of pairs with an angular separation within a specified range. The PC buckets

are sorted in order of increasing star pair angular separations.

The generalized Angle algorithm is as follows:

1. Supply data - At time t0, tracker data (H,V) and magnitudes for all detected

stars in the image is acquired and sent to the star tracker processor. A posi-

tion vector in the tracker frame is generated for each star, as demonstrated in

Section 2.3.4 and Eq. (9). Figure 16 illustrates the tracked star data and ASC

data at this step. Size represents relative brightness, while colors represent true

star correspondence, where correspondence is defined as the relation between

a tracked star A and a candidate catalog star Cn. As an example, the five-

point yellow star is the largest, and hence the brightest star in the FOV, and

in truth corresponds to the large four point yellow star. The small red stars

are the dimmest and maintain a similar correspondence. It is assumed that this

correspondence has not yet been established for this scenario.

2. Select primary pair - A pair of tracked stars, A and B, with corresponding unit

vector positions â{t̂} and b̂{t̂} are labeled the primary pair. The pair is made up

of two bright stars with separation angle θ defined as

θ = arccos(â{t̂} · b̂{t̂}) (11)
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Figure 16: Star Tracker Data

within a specified range. The stars chosen as A and B can have any brightness

magnitude, but choosing them to be the brightest stars in the image optimizes

the catalog search process (14). A and B will pass the subsequent steps only if

they correspond to stars in the ASC, and only if their magnitudes and separation

are such that they also correspond to entries in the PC. If these conditions are

not met, the A - B pair should fail every test, effectively skipping to Step 8

where A and B are redefined.

3. Determine primary pair candidates - Due to measurement error, the actual sep-

aration between A and B lies in the range [θ− 3εseparation, θ+ 3εseparation], where

εseparation (discussed in Section 2.4.4) is the 1σ error in the tracked star pair

separation measurement. If A and B correspond to stars in the ASC, then, as

the PC contains buckets sorted by angular separation, the primary pair will

correspond to a PC entry with indices in the range [jmin, jmax]. The PC entries

in this range are the primary pair candidates. Set the PC index i ← jmin, and

define primary pair candidates C
{i}
j1 and C

{i}
j2 as the first and second stars in
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the PC entry j. Steps 2 and 3 are demonstrated in Fig. 17, where the hashed

straight lines represent the angular separations between the star pairs.

Tracked Star Primary Pair Star ASC Star Primary Pair Candidate  

Catalog Data Tracker Data 

Angular Separation Relative Sizes → Relative Magnitude 

A 
B 

Cj1 

Cj2 

Figure 17: Primary Pair and Candidate Selection

4. Formulate primary assumption - Assume that the primary star A corresponds

to candidate C
{i}
j1 , and primary B corresponds to candidate C

{i}
j2 . This is known

as the primary assumption. Reject this assumption and proceed to Step 7 if:

(a) The observed magnitude of primary star A or B does not correspond to

the cataloged magnitudes of candidate C
{i}
j1 or C

{i}
j2 , to within a specified

tolerance, or:

(b) (Optionally) If additional attitude information is available (e.g. sun posi-

tion, rough attitude estimate), and this information is inconsistent with

the primary assumption.

This step is depicted in Fig. 18, where the curved lines represent the primary

assumption relationships. The erroneous scenario is shown where the wrong star

w is chosen as star B and assumed to correspond to candidate C
{i}
j2 . Since their

magnitudes are outside the matching tolerance (they are different sizes in the
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figure), Step 4 would discard this relationship and the algorithm would continue

at Step 7.

Tracked Star Primary Pair Star ASC Star Primary Pair Candidate  

Catalog Data Tracker Data 

Angular Separation Relative Sizes → Relative Magnitude 
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Cj1 
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Cj2 

Figure 18: The Primary Assumption

5. Determine mapping between frames - Using the corresponding unit vector posi-

tions found from Step 1 and an appropriate attitude determination algorithm,

find a candidate rotation matrix Rit that maps the primary pair vectors â{t̂}

and b̂{t̂} from the tracker frame {t̂} into the ECI frame {̂i}. This should roughly

coincide the two candidate star pairs.

6. Apply Direct Match Test - Predict which ASC entires represent stars in the

tracker FOV at time t0 given Rit(t0). Use the direct match test to evaluate the

validity of Rit(t0). If Rit(t0) is valid, then the algorithm successfully terminates.

Otherwise, proceed to the next step.

7. New Primary Pair Candidate - Candidate Cj1 is replaced with the second star

in PC entry j, and candidate Cj2 with the first. Return to Step 4. If the switch

has been previously made, then j ← j + 1, and:
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(a) If j ≤ jmax, then candidate Cj1 becomes the the first star in PC entry j,

candidate Cj2 becomes the second star in that entry, and the algorithm

returns to step 4.

(b) Otherwise, if j > jmax, proceed to next step.

8. New primary pair - The primary pair candidates list has been exhausted. Select

a new primary pair if there exists another pair of tracked stars meeting the

angular separation and magnitude criteria. If not, terminate the algorithm un-

successfully. Otherwise, re-define primary stars A and B, and their corresponding

angular separation θ, then return to step 3.

2.4.3 Mapping. Step 5 requires a mapping from the star tracker frame to

the ECI frame, which is based on the primary assumption. The primary assumption

is that two points in the tracker reference frame, the positions â{t̂} and b̂{t̂} at time t0

of the primary pair stars A and B, approximately correspond to equivalent ECI frame

positions of the primary star candidate stars (PC entry j, candidates Cj1 and Cj2).

The correspondence will generally not be exact, since the angular separations of the

two frame pairs will not be exactly equal due to star tracker position-reporting error.

With the primary assumption established, various methods for spacecraft atti-

tude determination may be used to calculate the estimated mapping from the star

tracker frame to the ECI frame, Rit(t0). Section 2.5 discusses selected attitude deter-

mination algorithms.

2.4.4 Error Estimation. Errors in the calculation of spacecraft attitude (Step

5), calculation of tracked star positions via the direct match test (Step 6), and star sep-

arations (Steps 3 and 6) will occur due to tracker and star catalog position-reporting

error. These errors correspond to approximately 5 arc-sec, 1σ, and 1/3 arc-sec, 1σ,

respectively (14). The tracker-related errors far outweigh the star catalog errors. The
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two key scalars εposition(S) and εseparation, may be derived from the attitude estimate

given by the attitude determination algorithm:

• ( εposition(S) )2 - The square of the error (1σ) in the estimated ECI-referenced

position of a tracked star, S , where the estimate is formulated using Rit(t0)

(14).

• (εseparation)2 - The square of the error (1σ) in the estimated separation of a

tracked star pair, where the estimate is based on the tracker-reported star po-

sitions.

2.4.5 The Direct Match Test. In step 6, the direct match test is applied to

validate, or invalidate, the mapping estimate Rit(t0). If the estimate is valid, there

should be a correspondence between the tracked stars and the ASC stars predicted to

lie in the tracker FOV. The direct match test determines whether the tracked stars

match the ASC stars by comparing the tracked stars’ positions and magnitudes with

those of specific ASC entries. The test is not applied to primary stars A and B, which

is assumed to already match to candidate stars Cj1 and Cj2 according to step 4 (14).

The primary assumption is confirmed and the algorithm successfully terminates if a

threshold number of tracked stars pass the test.

To pass the direct match test, four conditions must be met to establish that

tracked star X corresponds to ASC entry n. The first three conditions are depicted

in Fig. 19, where the two frames from Fig. 18 are superimposed, and the ASC star

vectors were rotated by the inverse of the rotation matrix found in Step 5. The stars

from the two sets of data are shown in a single frame for visual comparison in this

example.

1. Magnitude match - the reported instrument magnitude of X must match the

catalog-listed magnitude of n to within a specified value, ∆m (14).

35



A 
B 

Cj1 

Cj2 

Tracked Star 

ASC Star 

Angular Separation 

δXA 

δn1 X 
n 

3εposition 

Figure 19: The Direct Match Test - Correct Mapping

2. Position match - using the inverse (transpose) of Rit(t0), map the position vector

of ASC entry n’s with respect to the ECI frame into the star tracker frame. The

predicted position of ASC entry n must now match the observed position of

tracked star X in the tracker frame to within a specified value, 3εposition(X).

The specified threshold is the expected error in (3σ). This is seen from Fig. 19,

where the predicted position must fall within the blue dashed circle.

3. Separation match (A - Cj1) - The observed angular separation between tracked

stars X and A, δXA, must match δn1, the separation angle derived from the

cataloged positions of ASC entries n and candidate Cj1 to within a specified

value, 3εseparation. In other words, the predicted position of n in the tracker

frame must fall on, or near, the red dotted arc in Figure 19.

4. Separation match (B - Cj2) - Similarly, the observed angular separation between

tracked stars X and B, δXB, must match δn2, the separation angle derived from

the cataloged positions of ASC entries n and candidate Cj2 to within a specified

value, 3εseparation.
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The overlap between conditions 2 through 4 serves to test the proposed match

based on the position of the mapping of ASC entry n in the tracker frame. Conditions

3 and 4 are strong constraints, although given the accuracy of present-day trackers,

are difficult requirements to satisfy for stars that fail to correspond. They allow the

mistaking of an observed star triangle made up of the primary star pair and a third

tracked star, for a completely incorrect triangle that happens to be a mirror image

of the desired one (14). A similar case is illustrated in Fig. 20, where an incorrect

rotation matrix has mapped the primary pair and primary pair candidates to virtually

coinciding positions. Assuming that the magnitudes of the primary pair and primary

pair candidates are indistinguishable, and allowing that δXA is nearly identical to δn1,

star n is still clearly outside the (3ε) radius imposed by Condition 2. This result would

be rejected by the algorithm, and the algorithm would continue.
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δn1 

X 

n 

3εposition 

Tracked Star 

ASC Star 

Angular Separation 

Figure 20: The Direct Match Test - Incorrect Mapping

2.4.6 Star and Pair Catalogs. The primary information stored for each entry

in the ASC representing a star is the position vector with respect to the ECI and

the instrument magnitude, or star magnitude, as reported by the star tracker (14).
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Entries in the ASC are sorted by real-sky declination and only reference stars with

magnitude less than (brighter than) mASC
min , where mASC

min is brighter than the dimmest

star detectable by the tracker. Each entry in the PC represents a star pair and contains

the locations of the two ASC entries of the stars forming the PC pair. The PC entries

are grouped according to specified ranges of angular separation, while the pairs within

these groups remain unsorted. The PC contains every ASC star pair such that the

stars forming the pair have a separation in a specified range, and both of the stars

forming the pair have an instrument magnitude in a specified range (14). The Boeing

star catalog architecture is shown in Fig. 21.

Figure 21: Boeing Star Catalog Architecture
(14)
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It is critical to note that the ASC stores all star-pattern related features. The

PC is simply a lookup table of locations in the ASC that correspond to the candidate

catalog matches to the observed stars, effectively paring down the total number of

searches within the ASC, and therefore cutting search time. The PC is divided into

entry groups, or buckets, with each bucket containing one or more entries addressing

star pairs with angular separation in a specified range [bucketmin, bucketmax]. The PC

is backward-indexed, since it is constructed with respect to the largest angular sepa-

ration in the ASC. The buckets are sorted in order of increasing angular separation,

such that the first bucket contains the ASC locations of the star pairs with the small-

est angular separations. Conversely, the last bucket contains the ASC locations of the

star pairs with the largest angular separations.

The bucket table provides the bucket locations in the PC to specific star pairs,

where the ith entry in the bucket table represents the start location of the ith bucket

in the PC. For an ASC with with N star pairs, the N th star pair is addressed to the

last star pair entry in the last PC bucket, which also corresponds to the star pair

with the largest separation angle in the attitude control system (ACS). Bucket sizes

∆, or the number of star pairs addressed in each bucket, may vary, and are effectively

the PC’s resolution; a larger ∆ will result in less candidate pairs to process through,

while the inverse is true for a smaller ∆. The system depicted in Fig. 21 assumes a

constant bucket size ∆, where ∆ is in arcseconds (14).

Determining the primary pair candidates corresponding to a primary pair (Step

3) should be straightforward with this architecture. In this step, the primary pair can-

didates with angular separation in the range [θ−3εseparation, θ+3εseparation] are found.

An example to illustrate the use of the architecture is summarized from Needelman

et al. below:
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Let the maximum separation angle in the PC be represented as θmax, and assume

that the angle in question is exactly θ = (θmax − 1.7∆) where θ can defined by

constant bucket size ∆ for illustration purposes. Also, let the calculated separation

angle error εseparation = 0.2∆. For this case, pair candidates will lie in the range

[(θmax − 1.7∆)− 3(0.2∆), (θmax − 1.7∆) + 3(0.2∆)], or

PCRange = [θmax − 2.3∆, θmax − 1.1∆] (12)

Referring to the bucket table on the left side of Fig. 21:

• The bucket with the largest bucketmin smaller than (θmax−2.3∆); this is bucket

(M-2), with a bucket min of (θmax − 3∆).

• The bucket with the smallest bucketmin larger than (θmax−1.1∆); this is bucket

(M), with a bucket min of (θmax −∆).

The viable pair candidates will therefore be in the contiguous region beginning

with the first entry in group (M-2), and ending immediately before the first entry in

group M. Looking at the bucket table, group (M-2) begins at PC location (m+1),

and group M begins at PC location (p+1). Therefore, the pair candidates of interest

correspond to PC entries (m+1) through (p).

There is some wasted effort in checking pair candidates, since PC entries with

angular separations outside the desired range are checked. In the example just given,

time was wasted when looking at candidates with angular separations in the ranges

[θmax−3∆, θmax−2.3∆] and [θmax−1.1∆, θmax−∆]. However, if ∆ << 3εseparation, the

waste is trivial. For example, given a PC with [θmin, θmax]=[1.5◦,8◦], and a 3εseparation

of 20 arcseconds, a choice of ∆ = 5 arc-sec results in checking about 12.5% extra

candidates. The bucket table will contain 4680 integer entries, versus the approxi-
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mately 26,000 angles that would have otherwise have been listed in the PC without

this architecture (14).

2.4.7 Star Pattern Recognition Algorithm Summary. Numerous star pat-

tern recognition algorithms have been developed since the 1970s, each with various

methods and degrees of feature extraction, star database search, and utilization of

independent star pattern features (20). While various improvements to pattern recog-

nition effectiveness and efficiency have resulted from these efforts, once the LIS case

became solvable from a single real-time image, further efforts turned towards improv-

ing the robustness to errors in star detection and feature measurement (20). The angle

method represents the most fundamental star pattern recognition algorithm in terms

of feature/parameter utilization. The advantages to the Boeing catalog architecture

is that it avoids requiring the angular separation to be stored in the PC, slashing

memory required for the PC in half, and it avoids the need for a binary search to find

pair candidates with the correct angular separation when the LIS is executed (14). An

intermediate step in the algorithm is the computation of a suitable rotation matrix

using an attitude determination algorithm, which is discussed in the next section.

2.5 Attitude Determination Algorithm

2.5.1 Overview. In Section 2.4, features such as magnitude and separation

angle were extracted from vector observations of stars in the tracker frame and com-

pared to those in a reference star catalog. All comparisons were made with respect

to the star tracker and ECI frames. However, to set up the spacecraft attitude prob-

lem illustrated in Fig. 2, knowledge of the observed star positions with respect to

the body-fixed frame v̂{b} is necessary. This can be addressed with a rotation matrix,

Rbt, composed of the known Euler Angles representing the orientation of the star

tracker frame with respect to the body-fixed frame, similar to the demonstration seen
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in Section 2.2.2. Star tracker frames may be aligned with the spacecraft body frame,

in which case assuming no rotation matrix simplifies the analysis. This case is not

assumed here.

Once v̂{b} is determined, the attitude determination problem can then be stated

in its simplest terms as

AV̂i = Ŵi (i = 1, ..., n) (13)

where A is the orthogonal rotation matrix which maps the inertial frame into the

body-fixed frame. V̂1, ..., V̂n are the set of reference unit vectors in the ECI frame

and Ŵ1, ..., Ŵn are the set of observed unit vectors in the spacecraft body frame.

Because of error in both observed and reference unit vectors, an exact solution of A

does not generally exist, not even for the case of n equals two (17). Note the change

in notation, specific to the attitude determination algorithm, where previous v̂{b} →

Ŵi and v̂{i} → V̂i. In 1965, Wahba proposed the problem of determining the rotation

matrix A that brings the reference vectors V̂ into the best least squares coincidence

with observed vectors in the satellite body-fixed frame, Ŵ (24). This is to say, find

A that minimizes

n∑
i=1

‖Ŵi −AV̂i‖2 (14)

A then represents the least square estimate, or attitude matrix, of the rotation matrix

which maps the inertial frame into the body-fixed frame.

Wahba’s problem has been explored and solved through various methods to

varying degrees of success, and these methods can generally be classified into two cat-

egories: deterministic and optimal. Since measurement errors will guarantee that this

minimization will never truly approach zero, a deterministic approach, for example
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the TRIAD algorithm, discards part of the measurements so that a solution exists

(16). The problem becomes largely simplified and computationally fast, thus leading

to its popularity since its creation in the 1970s. The drawbacks of TRIAD, however,

are in the complex computation of its covariance matrix and its limit of accommodat-

ing only two vectors observations at a time. More than two vectors may be utilized

only by cumbersomely combining attitude solutions for different observation-vector

pairs. Furthermore, the initial discarding of information at the start of the algorithm

causes a loss of accuracy, while the order at which the algorithm handles the vectors

affects the resulting attitude solution (16, 2).

2.5.2 QUEST Algorithm. Optimal algorithms, on the other hand, compute

a best estimate of the spacecraft attitude based on a quadratic loss function, taking

into account all n measurements. The loss function L(A) is derived from Eq. (14) and

may be of the form

L(A) =
1

2

n∑
i=1

ai|Ŵi −AV̂i|2 (15)

where ai, i = 1, ..., n are a set of nonnegative weights. Equation (15) is the loss function

for the Quaternion Estimation (QUEST) algorithm. The primary disadvantage to

optimal algorithms is that they are typically slower than deterministic algorithms.

However, with the QUEST algorithm, not only is the problem simplified by utilizing

the four elements of the quaternion q (explained below) instead of the nine elements

of A, but the inherent approximation scheme allows for results with the speed of a

deterministic algorithm and the accuracy of an optimal result (16).

Returning to Eq. (15), it can be noted that since the loss function L(A) can be

scaled without affecting the determination of the optimal attitude matrix Aopt, it is
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possible to set

n∑
i=1

ai = 1 (16)

Then the gain function g(A) is defined by

g(A) = 1− L(A) =
n∑
i=1

aiŴ
T
i AV̂i (17)

To maximize the gain function g(A), the loss function L(A) must be minimized

through application of the optimal attitude matrix Aopt. The gain function g(A) can

be written in terms of the trace (16) which results in

g(A) =
n∑
i=1

ai tr[Ŵ
T
i AV̂i] = tr[ABT ] (18)

where tr denotes the trace operation, and B is the attitude profile matrix, given by

B =
n∑
i=1

aiŴi V̂
T
i (19)

Since it is more convenient to express A in terms of quaternions, the attitude matrix

A is expressed as

A(q̃) = (q2
4 −

→
q ·

→
q )I + 2

→
q
→
q
T

+ 2q4Q (20)

where I is the (3× 3) identity matrix and Q is termed the antisymmetric matrix

Q =


0 q3 −q2

−q3 0 q1

q2 −q1 0

 (21)
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The use of quaternions subjects the optimal solution to a single constraint, which can

be written as

q̃T q̃ = |
→
q |2 + q2

4 = 1 (22)

where K is a (4× 4) matrix defined as

K =

 S− σI Z

ZT σ

 (23)

and S− σI is a (3× 3) matrix, Z is a (3× 1) vector, ZT is a (1× 3) vector, and σ is

a scalar. These quantities are defined as

σ = trB =
n∑
i=1

aiŴi · V̂ T
i (24)

S = B + BT = trB =
n∑
i=1

ai(ŴiV̂
T
i + V̂iŴ

T
i ) (25)

Z =
n∑
i=1

ai(Ŵi × V̂ T
i ) (26)

Through the substitution of Eq. (20) into Eq. (17), the gain function g(A) may be

written as

g(q̃) = (q2
4 −

→
q ·

→
q ) trBT + 2tr[

→
q
→
q
T

BT ] + 2q4tr[QBT ] (27)
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or into the bilinear form

g(q̃) = q̃TKq̃ (28)

It is now clear through Eq. (28) that finding the optimal attitude expression is re-

duced to finding the quaternion that maximizes g(q̃). The quaternion constraint from

Eq. (22) can be implemented into the computation by using Lagrange multipliers

(16). Thus, a new gain function g′(q̃) that includes the quaternion constraint can be

introduced as

g′(q̃) = q̃TKq̃ − λq̃T q̃ (29)

where λ is chosen to satisfy the constraint. Differentiation of Eq. (29) attains a max-

imum or minimum value if

Kq̃ = λq̃ (30)

Thus, the optimal quaternion q̃opt must be an eigenvector of K. Since Eq. (30) is

independent of the normalization of q̃, the constraint condition does not determine

the eigenvalue λ. However, since λ must be an eigenvalue of K for each eigenvector

of K

g(q̃) = q̃TKq̃ = λq̃T q̃ = λ (31)

The optimal quaternion q̃opt is then the eigenvector of K that corresponds to the

largest eigenvalue of K, resulting in the maximization of g(q̃) (16). This relationship
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can be expressed as

Kq̃opt = λmaxq̃opt (32)

2.5.3 Attitude Determination Algorithm Summary. While the choice of atti-

tude determination algorithms is many, each one is better suited for different require-

ments. The deterministic TRIAD algorithm, through its speed and simplicity, is ap-

propriately suited for medium-accuracy missions (2). The optimal QUEST algorithm

has shown to be the most popular attitude determination method in high-accuracy

missions, where the additional computational burden is worthwhile(16). Indeed, it can

be shown that the QUEST attitude solution for a problem given only two observa-

tion vectors is the TRIAD attitude matrix (16). The QUEST algorithm is, however,

an estimation method, necessary in order to balance its application of optimization

combined with its relatively moderate speed of calculation. QUEST, therefore, can

represent somewhat of a compromise between a purely deterministic and purely op-

timal approach.

2.6 Laboratory Testing

As with any component of a spacecraft, star trackers are rigorously ground

tested. While Liebe describes a method to test star trackers using the real sky (10),

several examples of star tracker laboratory setups exist. These typically center around

the type of optical simulator used for testing. Some testbeds have optical simulators

that remain in a completely fixed position in the testbed. Figure 22 shows an example

of this type of “bench” test method, where the star tracker is placed on the test

bed opposite an imaging screen, with an optical collimator in between. The optical

collimator corrects the finite conjugate image geometry projected on the screen to
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simulate star images from infinity, while the imaging computer is able to stream

dynamic images to the star tracker. This simulates star tracker relative motion, and

facilitates testing of the star tracker hardware using star catalog imagery (23).

Star tracker Collimator Light protection 

DTE’s 

computer 

Star tracker’s 

control complex 

Bench 

Figure 22: Fixed Star Tracker Testbed (23)

Other optical simulators, on the other hand, are made for testing applications

where fixed bench-style testing may not be desired. These may involve a testbed that

exhibits a given free range of motion for the star tracker, more closely simulating the

dynamics involved in spaceflight. Figure 23 depicts such a test setup from ASTRIUM.

In this case, the optical simulator is directly mounted to a star tracker, providing the

ability to mount directly on a dynamic platform. The optical simulator is composed

of a microdisplay element, optical collimator, and imaging software. It is capable of

displaying star catalog or customized star images via a pre-programmed sequence, or

through remote or close-loop control using feedback sensors for attitude information

into the imaging system (1).
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Figure 23: Minituarized Optical Simulator (1)

Another optical simulator currently in use is John Hopkins University(JHU)/Applied

Physics Laboratories(JHU) Optical Simulator and Testbed. The objective of the re-

search was to design and build a controlled laboratory testbed to realistically test

basic star tracker functions, including different sensors and algorithms, while avoid-

ing the background and star twinkle noise sources inherent to ground-based open sky

testing (3). In this setup, a 4-ft radius hemispherical dome is placed over the tested

star track mounted on a two-axis actuated mount. The dome holds 100 fiber optic

patch cords connected to banks of white light emitting diode (LEDs). This simulates

100 of the brightest stars in the northern hemisphere. Figure 24 is a photograph of

the device.

The dome was precision surveyed after manufacturing to ensure a minimal vari-

ation in radius. After stretching, the variation in radius was found to be as low as

0.4%. The star pattern was constructed by mounting a laser emitter coupled with

a collimating lens on the star tracker base, and positioning the laser to the exact

position of the star. A drill was then used to make a small hole for the fiber optic

chord. The LEDs were biased and calibrated prior to testing. Preliminary testing

with a representative star tracker revealed that the concept has merit, although some

correctable angular discrepancies were reported (3).
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Figure 24: JHU/APL Optical Simulator (3)

2.7 Satellite Simulators

There are several satellite simulators used for educational and commercial re-

search purposes across the globe(15, 13, 12, 19). With respect to the scope of this re-

search effort, only AFIT’s SimSat and the Naval Postgraduate School NPS’s) Second-

Generation Three-Axis Spacecraft (TAS-2) simulator will be discussed.

2.7.1 AFIT SimSat. AFIT’s SimSat is a tabletop configuration satellite dy-

namics simulator mounted atop a spherical air bearing, capable of ±30◦ rotation

about its X- and Y-axis and full rotation about its Z-axis, and controlled remotely

via a ground station PC. Figure 25 shows SimSat in its most recent form prior to the

installation of the star tracker used in this research. It has three methods of actuation:

three fan/thruster pairs, three reaction wheels and four single gimbal control moment

gyroscope (CMGs) in a pyramid configuration. Control is executed via the dSpace

MicroAutoBox, a programmable real-time data acquisition and processor. Software,
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programming, and interfacing is facilitated via an onboard Mini-Box PC, which hosts

the Matlab®/SIMLINK control programs, as well as the dSpace ControlDesk real-

time interface. Attitude information is supplied via a Northrop Grumman LN-200

Fiber Optic Gyroscope Inertial Measurement Unit (IMU). The LN-200 is configured

with three orthogonal fiber-optic gyroscopes to provide angular rates, and three or-

thogonally mounted accelerometers to provide angular accelerations and measure the

gravity vector (12, 15, 19). The research presented here represents one of several in-

cremental changes to its configuration and capabilities over the past several years. See

McChesney (12), Roach et al. (15), and Snider (19) for more information.

Figure 25: SimSat Previous Configuration (12)

Before completing this research effort, initializing SimSat’s initial attitude in-

volved visually aligning SimSat with a predetermined inertial coordinate frame in the

laboratory and reinitializing its IMU data. In other words, the initialized orientation

of SimSat which sets its current Euler Angles to the ideal “home” position [0, 0, 0]T ,

is completely based on the user’s setting of the initial orientation, which is somewhat

arbitrary in terms of a few degrees. This effectively biases the vehicle attitude, and
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has become a normal step in day-to-day operation of the simulator. Furthermore, the

IMU regularly precesses over time and after a few relatively large maneuvers, adding

further bias to the attitude measurements supplied to the SimSat controller. This

requires regularly “resetting” SimSat, by commanding it to its last known “home”

position, deactivating the actuators, manually repositioning SimSat to the “home”

position, and reinitializing the attitude.

2.7.2 NPS TAS-2. In 2009, the NPS researched the addition of a star tracker

reference system on a laboratory-scale spacecraft simulator, the TAS-2 (22). The

TAS-2 is a tabletop configuration spacecraft dynamics simulator designed as a re-

search test bed for acquisition, pointing, and tracking techniques (22). The TAS-2 is

maneuvered atop a spherical air-bearing, actuated by an array of three variable-speed

CMGs. The attitude determination devices used on the TAS-2 include IMUs with

integrated rate gyroscopes, two inclinometers, a two-axis analog sun sensor, and a

camera functioning as the optics and CCD sensor of a star tracker. Two simulated,

gimbaled space telescopes are used to represent the spacecraft payload. Several on-

board computers process the sensor and controller information for the vehicle (22).

Figure 26 shows the latest TAS-2 configuration.

The star tracker camera is a WAT-902H2 SUPREME CCD camera with a Pan-

tex wide FOV lens. The lens system has an 8.5 mm focal length to allow for view

of the entire star field for a small range of motions (22). A specialized platform was

made to mount the camera closer to the screen, at a distance of approximately 1 me-

ter from the screen. The camera’s position relative to the vehicle’s center of rotation

can be seen Fig. 26. Calibration is performed by removing any “hot” pixels upon the

CCD device prior to experimentation. A star field was projected on a flat panel LCD

monitor placed over the test bed, and the lab lighting was dimmed.

52



Star Tracker 

Camera 

Figure 26: NPS TAS-2 with monitor (22)

The star tracker was mounted over the TAS-2, aligned with the inertial axis,

and offset from the axis of rotation. This relationship was illustrated by Tappe (22)

through vector representations of the star field and the two coordinate frames. Fig-

ure 27 shows this relationship, where I is the inertial frame, B is the star tracker frame

origin, I ′ is the inertial frame translated to the star tracker frame, and B′ is the star

tracker frame translated to the inertial frame origin. The inertial frame is fixed and

centered at the center of the TAS-2’s spherical air bearing. RO is the position vector

that describes the star tracker frame’s position with respect to the inertial frame.

From Fig. 27, it can be seen that the angle between the inertial vectors r1 and

r2 to stars s1 and s2 is not the same as the angle between the corresponding star

tracker vectors b1 and b2. According to Tappe (22), the generalized relationship can
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Figure 27: Vector Representation of Flat Star Field and Reference Frames (22)

be defined as

RB′

0 + αib
B
i = Aβir

I
i (33)

for all i vectors, where αi is the distance between the ith star and the star tracker

frame origin, and βi is the distance between the ith star and the inertial frame origin.

Equation (33) is a nonlinear equation, since αi is dependent on A (22).

The nonlinearity of Eq. (33) required a different approach to implementing the

system for testing. With the spacecraft at zero attitude, A equals the identity matrix,

thus αi is known and building a star catalog by using Eq. (33) to map the star tracker

vectors to the inertial frame is straightforward. However, once A becomes uncertain, αi
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cannot be solved for without a complex optimization problem (22). Therefore, Tappe

made use of an initial attitude estimate with which to solve for αi. This allows for the

left side of equation Eq. (33) to be determined, where then the angles between the

star tracker and catalog vectors may be compared and matched. Finally, the refined

attitude matrix A can be determined using the attitude determination algorithm.

The research objective for the NPS project was to integrate and evaluate three

star pattern recognition (Angle, Triangle and Spherical Triangle) and attitude deter-

mination (Least Squares, TRIAD and QUEST) algorithms on a simulated spacecraft.

The algorithms chosen for formal testing were the Angle method and the QUEST

algorithm. First, the the star tracker built a catalog of the nine stars on the LCD

screen with the TAS-2 completely level. Six trials were executed, with five tests each

trial, and each test consisting of 50 averaged runs. All tests were executed with the

TAS-2 at zero attitude in order to test the validity of the initial attitude estimation

approach.

Initial attitude estimates from other sensors were simulated by inputting an

initial A “error matrix” at the start of each trial. The first five trials tested the al-

gorithms with initial A estimates with errors of 0, 3, 6, -3, -6 degrees, respectively.

The sixth trial had an initial A estimate of two degrees of error, but utilized five

iterative attitude updates. All trials were executed five times, and each test produced

fifty solutions, which were averaged and the standard deviation calculated. The ac-

curacy criteria used in this testing was a star pair angular separation error of ±500

arcseconds (22).

Dynamic testing of the Angle method and the QUEST algorithm yielded mixed

results. On average, the algorithm matched about six stars out of the total nine stars

over the course of testing. Additionally, the algorithm was able to approximate the

vehicle’s attitude with initial estimate errors within -6 degrees to 3 degrees. Beyond
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this range, the errors were too great to allow for star matching and attitude determi-

nation. The iterative approach showed marked improvements in the results, with the

Euler Angles at near zero.

2.8 Summary

Chapter II covered the background information on spacecraft attitude deter-

mination and spacecraft dynamics. Next, star tracker operation was explored to em-

phasize the basic parameters that must be considered prior to efforts in developing,

operating, and analyzing a star tracker system. Then, star pattern recognition and at-

titude determination algorithms were examined. Finally, existing star tracker testbeds

were surveyed.
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III. Methodology

3.1 Introduction

Chapter III covers the analysis of the problem introduced in Chapter I and the

development, integration, and validation of the star tracker reference system concept

for SimSat. The first section introduces the key requirements for a viable solution

to the stated problem. The second section covers the hardware specifications of the

system optics. The third section discusses the development of the LED concept be-

ginning from preliminary output and physical configuration studies, to the analysis of

the voltage control source, and finally to the introduction of the final LED sub-system

concept. The next section details the analysis, specification, and installation of the

selected star field surface. The fifth section covers the implementation of the angle and

QUEST algorithms into the SimSat system. The final section of Chapter III presents

the tests performed to validate the concept.

3.2 Key Requirements

Chapter II presented several aspects of the problem that required further con-

sideration. Before implementing any possible hardware and software solutions, it is

critical that key requirements related to the problem are analyzed and understood.

If the task was to integrate a star tracker for use on a satellite testbed with direct

sight of the real sky, then the approach to solving the problem is more closely related

to a conventional satellite build-up case. Much knowledge of the relationship between

the star tracker sensor, satellite interfaces, the celestial sky, and all associated error

sources has accumulated over the span of 40+ years, as evident from the literature

examined in Chapter II. However, for the case of an indoor laboratory testbed, few

analogous cases exist, especially for a dynamic satellite simulation testbed. There-
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fore, while analysis of the problem here may occur in a manner analogous to that of

space-rated star trackers, specialized considerations must be made.

The research work done by NPS on the subject provides the most insight into

the problem regarding the implementation of star trackers on dynamic testbeds (22).

This configuration was chosen as the initial basis for this research effort since it

is a completely external, space-representative method for attitude determination as

compared to a setup such as ASTRIUM’s (see Section 2.6). First, the system exhibited

errors affecting the star matching portion of the algorithm under zero degree error

testing, or in other words, a purely static test. While not directly assessed in the work,

these errors can be attributed in a general sense to camera errors, LCD projection

screen errors, algorithmic errors, or any combination of the three. The camera used was

of the CCD sensor type, and while it is not known specifically which inherent noises

may have been contributed here, it is likely that camera noise negatively affected the

star brightness measurements.

Furthermore, the star pattern was projected on an LCD screen. The projected

stars on the screen are not afocal point sources, as stars are treated, but rather they

are a collection of LCD pixels that, when imaged, are transformed into a different

collection of pixels many times smaller on the CCD sensor. This can lead to errors in

centroiding calculations. Because the camera used is not highly-sensitive, error con-

tribution from nonsystemic pixel noise from the LCD screen can be assumed to be

small. However, if the camera exposure timing is short relative to the LCD screen

refresh rate, resulting periodic fluxuations in measured star brightnesses are likely.

Finally, the algorithm used a simplified filtering scheme where star separation angles

were measured only with respect to the brightest star in the image, or the “master

star” (22). When cataloged measurements were compared to the tracked measure-

ments, star matches were made based solely on the most commonly reoccurring angle

58



matches associated with the master stars from the cataloged and tracked images. In

other words, the master star of each image is the only star associated with a bright-

ness value. If several stars have nearly the same brightness value as measured by the

camera, this would allow the algorithm to pick different master stars across multiple

images.

Second, dynamic testing, in which the TAS-2 was held at zero attitude while

receiving various attitude matrices with given error angles, yielded important results

(22). It was shown that the chosen test bed/star field configuration required a reliable

initial attitude estimation from another sensor, otherwise accurate attitude determi-

nation would not be possible. Afterwards, with continuous attitude updates, testing

demonstrated that corrections to erroneous initial attitude estimates could be made,

resulting in far more accurate attitude solutions (22). This was necessary due to the

geometric relationship between the star field, the star tracker frame, and the inertial

frame used in the setup, as pictured in Fig. 27 and defined by Eq. (33).

For attitude determination in space, such a relationship is not applicable for a

star tracker operating largely within the pinhole camera model. The celestial sphere

is assumed to have a radius of infinity, so all star position vectors may be given the

same unit length, and angular measurements become consistent across the celestial

sphere. More importantly, the angles between two stars, as observed from two different

locations at relatively finite distances away, may be approximated at nearly equal. This

is the key to the comparison of vector observations from an Earth-based observatory

to those made by a star tracker mounted on a satellite floating many miles above the

Earth. Figure 28 is a close-up view of the two observation points operating within the

pinhole camera model (see Fig. 9), where the vectors r1 and r2 point to the same pair

of stars at a near-infinite distance. rp is then the finite distance between the reference

frames, and the separation angles θ are equal in this case.
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Figure 28: Equal Separation Angles from Two Observation Points

Using knowledge of the pinhole camera model and the insight gained from the

NPS’s previous research, various approaches could be implemented to solve the prob-

lem presented in this research. For this initial stage of research, an exploratory ap-

proach that focused on the extraction of the key parameters of star brightness and

angular separation, as well as correctly mapping the position vectors to each star, was

used. This allows for the choice of the Angle algorithm for star pattern determination.

Other parameters can be extracted and utilized by future algorithms. Ultimately, the

solution to the problem addressed by this research will require consistent feature mea-

surements from all possible vehicle orientations, subject to the precision and accuracy

requirements of the given spacecraft simulator. For space-rated star trackers, the pin-

hole camera model and expensive (greater than $500,000), highly-accurate sensors

provide most of this.

3.3 SimSat Star Camera and Lens System

The camera sensor is the measurement instrument for the star tracker, and

therefore the foundation for the performance of the entire system. For this research
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effort, it was unnecessary to procure a space-rated star tracker. Such star trackers’

optics are calibrated for use in space and otherwise very expensive. No accuracy re-

quirements were stated regarding attitude for this baseline research. One requirement,

however, was that the camera had to be integrated onto SimSat, thus it needed to

be easily mountable and interface with the SimSat Mini-Box. Since the IMU is the

primary attitude measurement sensor, SimSat did not require a high attitude update

rate from the star tracker, thus selecting a camera based on a minimum frame rate

of 1 fps was acceptable. Finally, although image resolution was rarely addressed in

the background literature, higher resolutions allow for improved centroiding in lieu

of more complex algorithms that determine the centroid at the sub-pixel level. There

was an associated cost in terms of increased noise propensity due to the increased

number of pixels, as well as higher data and computational requirements necessary to

process the larger image data.

The camera chosen was a Lumenera Lu205c 2.0 Megapixel USB 2.0 camera with

a 35mm multi-Megapixel CCTV lens. The camera is capable of 10 fps at full 1600x1200

resolution and on-board image processing. Coupled with the lens, the newly-built star

tracker attained a FOV of approximately 10 degrees in the horizontal. Since the FOV,

discussed in Section 2.3.1, affects the angular resolution of the image and the extent

of star field coverage per image frame, this FOV balances the need to acquire detailed

star field images containing the requisite number of stars versus keeping the later

task of populating the star field practical. Figure 29 is a photograph of the camera

mounted on the newly installed camera deck, which locates and centers the camera

sensor approximately 15 inches from the SimSat air bearing.
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Figure 29: Lumenera Lu205c Camera

3.4 LED Development

With the camera and optics selected, the next step involved deciding on the

type of light source to represent the stars. The use of an LCD screen by Tappe was an

obvious first step, since its projective nature makes it the most versatile method. But

as discussed in Section 3.2, any light source mounting on a flat surface is unacceptable.

The success of the test bed developed by Boone would suggest that a similar setup

would be optimal for this research. However, this methodology involves hard-mounting

a complex and costly LED/fiber optic system. To have proceeded directly in this

manner would have been premature without first understanding the many test bed and

algorithmic uncertainties addressed in this research. Thus, inexpensive LEDs, which

cost on the order of $0.25 to $0.50 each were chosen as acceptable star representations.

3.4.1 LED Preliminary Studies.

3.4.1.1 Output Considerations. In order to choose the correct LED,

several considerations had to be carefully weighed. First, LEDs are made in several
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sizes, but are not ideal point sources at larger sizes. Very small LEDs, while promising

substitutes for point sources, are difficult to handle during developmental research and

testing. Thus, a small LED size which could be reasonably manipulated during this

research effort would be chosen. Second, the color of the LEDs had to be selected.

Although some data existed regarding the light sensitivity of the camera sensor, it was

unclear how well it would work with a particular color LED. Thus, three colors, red,

green, and blue were initially chosen for analysis. The use of different colors also adds

a second level of variation to the overall LED intensities when coupled to different

resistors.

The third consideration, LED light output, was the most critical. The “bright-

ness” of an LED is most directly controlled by the amount of current flowing through

an LED. Ohm’s law stating that

V = I/R (34)

requires that a resistor of some resistance value be placed in-line with any LED,

and that the necessary resistance will be a function of the voltage source, the LED’s

forward voltage and forward current properties. Therefore, the limiting variables of

the light output of the LED will be the minimum current at which it can effectively

output light, and the maximum current rated by the manufacturer.

The luminance of an LED describes the LED’s light output over a given area

and is the parameter most directly related to the amount of light detected over the

camera sensor’s pixels. An LED whose output is relatively uniform, regardless of

viewing angle, is said to be Lambertian, where the the luminance is isotropic. This

property is key to simulating a point source of light since the measured brightness

of the LED must be the same regardless of the viewing angle. Figure 30 shows the
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manufacturer-supplied radiation pattern plots for the preliminary LEDs selected. Note

that a wider curve typically gives an LED a Lambertian light output.

Noting the above considerations, red, green, and blue Lumex 1209 LEDs were

selected for preliminary analysis. These LEDs would have to be coupled with appro-

priate resistors. Resistors determined to be in the safe operating range for these LEDs

were between 100 and 10,000 ohms. Thus, selecting and pairing appropriately-sized

resistors to yield a specific current would determine the light output of the LED. For

the 5 V DC supply voltage and mentioned resistor values, the currents through these

LEDs ranged between 3 mA to 0.15 mA. The physical characteristics of the selected

preliminary LEDs is shown in Fig. 31.

3.4.1.2 Physical Considerations. Physically constructing useful star

patterns out of the selected LEDs onto the star field surface using materials and

methods compatible with an experimental methodology required a simplifying, but

versatile approach. It was already decided that the LEDs would be “soft-mounted”,

or simply glued or adhered, to the star field surface to facilitate an experimental

approach. Instead of wiring and placing individual LEDs onto the surface, a multitude

of LEDs/resistor combinations were mounted on “patch boards” and wired to the

power source. This arrangement greatly simplified multiple placements of LED on the

star field surface, and also simplified the construction and wiring process of the LED

support electronics.

The selected arrangement was based on a 3×3 square pattern for a total of nine

LED per patch board. Figure 32 is a conceptual layout of the pattern arrangement.

The colored line segments in Fig. 32 represent the distinct angular separations between

the lit LEDs that the star tracker would detect. Assuming that only one star pair is lit

on the patch boards such that a minimum of two stars are maintained in view for all
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Figure 30: Preliminary LED Radiation Pattern Plots
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Figure 31: Preliminary LED Physical Characteristics
(11)
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Figure 32: Patch Board Pattern

66



possible positions of the star field, and that the vehicle maneuvers into a region where

the star tracker has only one patch board in view, this arrangement then guarantees

a maximum of five unique angular separations for any combination of LED pairs.

Having created the patch board pattern, the physical arrangement of the associ-

ated electronics was developed. For the three-color LED arrangement, the preliminary

patch board to be used for testing was fitted with three LEDs of each color, with each

color receiving a 1,000, 5,000, and 10,000 ohm resistor. These resistors represent the

range of desirable resistance values. The patch board had to be as small as possible

for this configuration in order to best conform to the star field surface. Therefore, a

1 inch×1 inch square for the patch board was selected, with a uniform 8 mm spacing

between LED centers. Figure 33 is schematic of the patch board layout, and Fig. 34

shows photographs of the actual patch board prototype. Note that resistors were not

yet fully installed in this example. After a few of these boards were built, the next

step was to perform preliminary testing and analysis.

GRND 

Contacts  w/holes 

0805 Resistor 

2PLCC LED 

1 inch 

1 inch 

8 mm x 8mm  
LED spacing 

Figure 33: Patch Board Schematic
(11)
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(a) View from Top

(b) View from Angle

(c) Mounted with Black Masking

Figure 34: Patch Board
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3.4.1.3 Preliminary Analysis. The purpose of preliminary testing of

the selected LED configuration was to gain knowledge of the relationship between the

star tracker, SimSat, and the LEDs, specifically the controllable factors that influence

the measurement of LED brightness magnitude. For this testing, a simple test stand

was constructed, where a single patch board was mounted on a beam suspended 3 ft

above SimSat resting on the air bearing pedestal, shown in Fig. 35 with the laboratory

lights dimmed.

Figure 35: SimSat with Preliminary LED Test Stand

For multi-positional measurements, SimSat was set at various static positions and

images were sampled with the patch board still within the FOV. This quasi-dynamic

testing was to measure any variations of LED magnitude resulting from different

viewing angles of the LED. Throughout initial testing, numerous factors were found

to contribute to the final magnitude measurement of each LED for use in the star

pattern recognition algorithm. What was found is qualitatively described as:

• Focus and aperture settings on the camera lens
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• Camera exposure and algorithmic settings for star detection

• LED overall light output

The high resolution of the star tracker camera allows it to sense minute details

exhibited by the LEDs. This often meant that the camera was capable of resolving the

diode and other internal features of the LED lens itself, which was too much detail

for a point source simulation. Since defocussing the optics is a typical practice in

space applications, slightly defocussing on this lab camera lens in order to eliminate

excessive detail proved beneficial. A related setting was the aperture of the lens, which

controls the amount of non-collimated, or indirect, light passing through the lens. The

primary effect of decreasing the aperture was that the contrast between direct light

sources (such as the more directional light from the LEDs) and indirect light (such

as the ambient and reflective light from the surrounding laboratory) was increased so

that only the light from the LED would be sensed by the star tracker. A secondary

effect of reducing the aperture is that it increased the effective focal range of the

camera, thereby making the image appear “sharper” for a given focus setting. The

images in Fig. 36 illustrate this process. Note that the laboratory lights were dimmed

to minimize the sensing of extraneous objects.

Figure 36 (a) shows all nine LEDs were sensed by the camera. Too much light

was being emitted by the brightest red LEDs, resulting in glaring and reduced color

saturation of the LED images. Furthermore, the dimmest green LED’s (at the top

left) light emission resulted in a discontinuous shape. The next step was to reduce the

aperture and focus, shown in Fig. 36 (b), which resulted in improving the features of

the brighter LEDs at the cost of decreasing reception of the dimmer LEDs. Subsequent

adjustments showed that with even just a slightly wider aperture, too much blur

distorted the shape and the integrity of the light from the LEDs. Thus, the two

settings were adjusted simultaneously, resulting in an image with a dark background,
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(a) Focused and Wide Aperture

(b) Less Focus and Narrow Aperture

(c) Balanced Focus and Aperture

Figure 36: Patch Board Image Focus and Aperture Adjustments
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relatively-consistent internal features, and circular LED shape profiles, as seen in

Fig. 36 (c).

The camera exposure and algorithm threshold settings are controlled via soft-

ware associated with each component. The exposure, along with the aperture, controls

the total amount of light impinging on the sensor. The time duration of light collection

on the sensor is the exposure time of the image, and directly affects the overall image

brightness. Short exposures result in dimmer images, but are sensitive to fluctuations

in brightnesses. For long exposures, more light is collected, therefore the resulting

images are brighter, and any brightness variations over the course of the exposure du-

ration are steadied. However, long exposure times are also sensitive to motions which

may result in smearing of the LEDs across the image. Shorter exposures can address

this issue.

Once the images were collected with the appropriate focus, aperture, and expo-

sure settings, the algorithm must then process the images and detect the LED. Two

threshold settings within the algorithm determine detection of an LED: pixel inten-

sity and area. The pixel intensity threshold tells Matlab® which pixels are bright

enough to possibly comprise a star. The algorithm first converts all color images to

gray scale, or the average of the red, green, and blue channel values, therefore reduc-

ing the image into its basic luminosity values. With the image background black, any

pixels above a set percentage of total luminosity were identified for processing. Next,

to sort against noisy pixels, a “blob” analysis was performed, where the groupings of

pixels above the luminosity threshold were identified. The total pixel areas of these

groupings must then be above a certain area threshold to be considered an LED. The

resulting image from Fig. 36 (c) was analyzed in this manner, as depicted in Fig. 37.

Figure 37 shows the sparsity matrices of the resulting image analysis, holding ex-

posure constant. Only the pixels above the intensity threshold are plotted in blue.
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(a) 2% Intensity Threshold

(b) 25% Intensity Threshold

(c) 10% Intensity Threshold

Figure 37: Star Recognition Thresholding
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Figure 37 (a) shows the results of a 2% intensity threshold. Sensor noise and glare are

clearly visible here. With an intensity threshold value increased to 25%, the sparsity

matrix is noticibly cleaner, as shown in Fig. 37 (b). However, the dimmest LED failed

to meet threshold requirements, and dimmer discernable features from other LEDs

were removed, thus giving dimmer LEDs a non-circular shape. With a 10% intensity

threshold, the majority of the noise was cleared up in Fig. 37 (c), and most of the

charactersitic roundness of the LEDs was maintained. If the area threshold filter of 50

pixels was subsequently applied to this image, the remaining discontinuos portions of

the of the LEDs that were not larger than 50 pixels in area would be removed. Overall,

these settings resulted a balance between noise filtering and feature preservation.

After the camera and algorithm settings were refined, multi-positional imagery

was recorded to determine any LED brightness variations as a function of the star

tracker’s viewing angle relative to the patch board. Recalling that Position 1 is pic-

tured in Fig. 36 (a) and Fig. 37 (c), analysis for three other positions proceeded in a

similar manner. Figure {fig:MultiPosColor presents a simplified analysis.

From Fig. 38, there is a marked difference in pixels passing the intensity thresh-

old for the dimmer LEDs. The directional nature of these LEDs is evident from Fig. 34

(a), where the internal features of the LED are clearly visible when looking straight

down the epoxy LED lens. However, when the viewing angle to an individual LED is

offset from the axis of the LED lens, direct view into the LED is reduced. Therefore,

the clear, raised-dome LED lens produces far too directional of a light emission with

dimmer LEDs, which would place a limit on the lower end of the range of usable

brightness values. For this research, it was desirable to operate the LEDs in as dim

of a mode as can be accurately discerned by the star tracker. Therefore, more diffuse

LEDs were preferred.
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(a) Position 2

(b) Position 3

(c) Position 4

Figure 38: Multi-Positional LED Brightness Variations
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Instead of immediately sourcing new LEDs, the Lumex LEDs that were already

mounted on the patch board were lightly hand-sanded with fine-grit sand paper in

order to produce a more diffuse LED lens. Figure 39 is a photograph of the resulting

patch board.

Figure 39: Patch Board with Sanded LEDs

With the LEDs sanded, the patch board was replaced on the test stand for further

analysis. Prior to multi-positional imaging, it was determined that the diffuse light

emitted from the dimmest LED was too dim at the current aperture and exposure

settings. After a slight increase in camera aperture and exposure to collect more light,

the remaining dimness characteristics required a reduced intensity threshold value of

4% to be used. With these settings, a new set of images were taken from different

viewing angles. The images were finally passed through the intensity threshold filter

as shown in Fig. 40.

From examining Fig. 40, two key results are noted. First, the diffuse LED lens

coupled with the camera and algorithm settings resulted in reasonably consistent

LED pixel areas for all viewing positions, with very little noise. Second, the brighter
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(a) Position 1

(b) Position 2

(c) Position 3

Figure 40: Multi-Positional Brightness Variations of Diffuse LEDs
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LEDs show increased internal color saturation. When an LED exhibits more color

information, it translates into more intensity information for that particular LED,

which is critical since the goal is for each LED to have a distinct, consistent, and

recognizable measure of magnitude. However, none of these early tests indicate that

the camera sensor is more sensitive or noise-prone to any specific LED color. Thus,

the critical parameter is therefore the overall intensity of the LED, which can be

exhibited by any color LED. With this knowledge gained, attention was then focused

on a suitable method to power the LEDs.

3.4.2 LED Controller. The voltage source for the LEDs used during the

previous analysis was an Arduino Mega 2560 microcontroller board, outputting 5 V

DC and a maximum of 50mA of current to each LED. It has a total of 54 digital

input/output pins, and is interfaced to a personal computer via USB 2.0 connection.

The Arduino Mega was chosen to power and control the LEDs because of its C-based

open-source programming software and the large number of digital pins. By selecting

the appropriate pins via the programming software, the desired LEDs from the patch

boards may be selectively powered. A photograph of an Arduino Mega is shown in

Fig. 41.

Figure 41: Arduino Mega 2560
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The major drawback to this method of powering the LEDs is that the voltage

signals are digital, thus fixing an LED’s light output to depend only on its inherent

light emission characteristics and the resistor to which it is paired. This system is

highly inflexible and thus a software-controllable method was desirable. The Arduino

Mega is capable of digital pulse-width modulation (PWM). PWM of a digital source

voltage would enable analog-like control of the current passing through the LEDs by

controlling the proportion of ON time to the cyclic period, or duty cycle, of voltage

through the LEDs. In other words, the proportion of the duty cycle to the total cycle

time is what determines the average voltage. Figure 42 illustrates this principle.

ON 

OFF OFF OFF OFF 

ON ON ON 

D 2D 3D 4D 0 

Vmax 

VAVG 

Duty Cycle (time) 

Duty Cycle 

Figure 42: Simplified PWM Graph

For a PWM-driven rectangular pulse wave with a duty cycle D, period T , and digital

voltage Vmax, the average voltage VAV G is defined by

VAV G = DVmax (35)
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where D is defined as

D =
ton
T

(36)

Implementing PWM using the Arduino board produces a challenge; only fourteen of

the Arduino Mega’s digital output pins are true PWM-capable. The star field above

SimSat would require far more than 14 LEDs. However, the Arduino Board’s 54

digital pins can be manually programmed to perform under PWM by including the

appropriate ON and OFF delays in the programming code. Each programmed action

performed by the microcontroller is represented by a line of code, therefore each action

performed on each LED is sequential, resulting in a new effective period governing the

LEDs’ ON/OFF cycle. Each LED is then activated, delayed, deactivated, and delayed,

one LED after the other, effectively shortening the duty cycle since the OFF time is

now a function of the number of LEDs being utilized within the code. Thus, assuming

no additional delays from the microcontroller, the effective duty cycle for the ith LED,

Deff,i, is now defined as

Deff,i =
ton,i∑
Tn

(37)

where ton,i is the ON duration for the ith LED and
∑
Tn is the sum of the periods of

all n LEDs. A critical consideration using this method of PWM then becomes an issue

of timing. If the camera exposure setting is set too short, flicker may be noticeable

depending on the effective duty cycle of the LED. Additionally, more LEDs being

controlled by the microcontroller decreases the effective duty cycle by increasing the

effective period. After some initial checks of the concept on the patch board with all the

resistors changed to 100 ohm resistance values, it was found that a 1,000 microsecond

period for each LED was acceptable. Using a multimeter, the average input current

80



values produced ranged between 0.05 mA to 2 mA. While some flicker effect was

noticed in this early analysis, the effect was negligible and will be analyzed in greater

detail in later experiments. The check proceeded after a slight increase in the camera

aperture and an intensity threshold setting of 12%. The results are shown in Fig. 43,

where the ton,i for each LEDs (1 ms, 500 ms, and 1,000 ms), is displayed next to the

corresponding LED in the image.

1 ms 
1 ms 

1 ms 

500 ms 1000 ms 1000 ms 

1000 ms 

500 ms 

500 ms 

Figure 43: PWM Analysis on Color LEDs with Duty Cycles Displayed

After preliminary studies of the LED configurations and the method to control

them, critical insight was gained. The aperture and focus settings, adjusted in tandem,

worked to filter and smooth out much of the light producing unwanted noise prior to

entering the sensor. The camera’s exposure setting allowed for control of the overall

image brightness, while the intensity and pixel area threshold settings within the

algorithm acted as the first step in star identification logic, as well as a second filter

against noise. Finally, the LED lens properties were found to be a consideration for

the LEDs.

3.4.3 Final LED Sub-System Concept. Using the knowledge gained from

Sections 3.4.1 and 3.4.2, it was determined that the next step would be to utilize

a more star-like LED that behaves more like a point source of light. Several LEDs
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on the market exhibit Lambertian light emissions without the need to sand the lens.

Furthermore, it was determined that the camera sensor did not favor a specific color

LED to a large enough degree for the purposes of this research effort. With the use

of PWM, the additional utility of using different LED colors to add a second degree

of intensity variation was no longer applicable.

The LEDs selected for the formal portion of this research effort were Everlight

67-21/XK2C PLCC2 White 5075K LEDs. While slightly larger than the previously

studied LEDs and with a lens that is mostly flat, their light output is considerably

more Lambertian. The radiative pattern of these LEDs is shown in Fig. 44.

Figure 44: Final LED Radiation Pattern Plot

Since different LEDs were utilized, new patch boards were constructed. The new

boards maintain the spacing and general configuration of the previous patch boards,

with the major difference being their 1.25 inch×1.25 inch square dimensions. With

the new LEDs in combination with PWM control, 390 ohm resistors were coupled

to all LEDs. With the electronics installed, the patch boards were painted a flat

black. Additionally, because the LED lenses are larger in diameter than the previous
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LEDs, the lenses were masked to reduce the effective diameter of the lenses with the

intention of producing smaller point source-like light sources. Figure 45 is a snapshot

taken during final preparation of one of the patch boards.

Figure 45: Final Patch Board Preparation

After the new patch boards prepared, one was mounted and given a preliminary

test to verify the concept. By this point, the star field surface, discussed in detail in

the next Section, was installed over the SimSat air bearing pedestal, so that the patch

board was located 48 inches over the SimSat pedestal, or approximately 33 inches from

the camera sensor. The preliminary test of the patch board LEDs was performed using

the same PWM values and camera lens settings as in the previous analysis. However,

the camera exposure was set to a moderately shorter setting, while the intensity

threshold was set at 4% in order for the algorithm to pick up the dimmer pixels.

Figure 46 depicts the results from this preliminary analysis. With the LED concept

verified, the next focus of discussion is the star field surface to which the LEDs will

mount to.
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Figure 46: PWM Analysis on White LEDs with Duty Cycles Displayed

3.5 Star Field Surface Development

Since the decision to use LEDs occurred early on in this research, efforts had to

be made in determining the proper surface to mount the star-representative LEDs.

In Section 3.2, analysis showed that a flat surface has definite limitations. These

limitations will be analyzed before examining the spherical surface approach adopted

in this research effort. With the desired surface determined, this section will conclude

with the discussion of the specification, production, and installation methodology for

the chosen surface.

3.5.1 Flat Surface Analysis. The critical aspect of using a flat surface mounted

at some fixed distance from the vehicle is that the distance between the camera and

the observed portion of the star field within the FOV is constantly changing with re-

spect to the vehicle’s attitude. With these changing distances, the apparent distances

between the imaged objects will appear to vary from different orientations, even if the

actual linear distances on the star field are the same. This scenario is illustrated for

the simple “top-down”, two-dimensional case in Fig. 47, where the camera is mounted

at some fixed position M away from the vehicle’s center of rotation, with the bore-

sight orthogonal to the rotational axis and the star field located a distance R from the

84



center of rotation. The camera has a constant FOV φ, and the vehicle’s orientation

(typically unknown in the attitude determination case) is defined by a generic Euler

Angle Ψ. The star groupings on the star field are set up such that the red and blue

stars, separated by a linear distance c, are at the edges of the camera’s FOV when Ψ

equals zero. The distance c thus represents the length of the image frame projected

at the star field surface. Finally, the green star is place at some distance e external to

the FOV occupied by the red and blue stars.

Ψ 

φ 

φ 

M 
M' 

e c Star Field 

Surface 

e c 

R 

Camera 

I 

Exactly Similar  

Star Groupings 

φ held constant  

|M| = |M'| 

Figure 47: Flat Surface Geometric Analysis

If the same grouping of stars is simply slid down the surface of the surface, maintaining

the same relative distances c and e, and the vehicle is rotated some angle Ψ in order

to capture the stars, it would find that all three stars now fit in the FOV. Thus, if the

red and blue stars at the first position were defined with an angular separation of φ

with respect to the camera frame, they no longer have that angular separation when

viewed from a different relative position.

This places a detrimental effect on using the camera frame’s preset (H,V ) co-

ordinates to build unit vectors for measuring and comparing the angular separations
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between star pairs, as discussed in Section 2.3.4. Figure 48 depicts a close-up view

of this effect at the second position described in Fig. 47, where the hashed red line

represents the image plane, normal to the boresight and projected at the intersection

of the inner-most FOV vector and the star field (the location of the red star). The

vectors representing the projection rays of the objects on the star field to the focal

point are represented, as well as the projected objects on the image plane. The red

dots represent generic points in the image, while the stars represent the same star

mentioned in the previous paragraph and their projections on the image plane.
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Figure 48: Flat Surface Image Plane Analysis

Examining the image plane, we see that it is the base of the triangle defined

in part by the angle Ψ and the sum of the lengths c and e. The width of the image

plane c′ is then clearly dependent on Ψ, and can be expressed using the geometry

from Fig. 47 as

c′ = 2

(
R−M cos(Ψ)

cos(Ψ− φ
2
)

sin
φ

2

)
(38)
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and the angles γ, δ, and ω can be defined as

γ =

(
π

2
− φ

2
−Ψ

)
(39)

δ =

(
π

2
+
φ

2

)
(40)

ω =
(π

2
−Ψ

)
(41)

Thus, the image plane coordinates are seen to depend on the Euler Angle Ψ. To

examine this effect, we let R equal 48 in, M equal 14 in, and φ equal 10.45◦ and we

imagine a scenario where the vehicle will track the star group as it slides across the

star field surface. If the scenario begins at Ψ equal to zero and we begin to slide the

star group to the right, the vehicle will rotate such that the red star is maintained

at the leftmost part of the camera’s FOV. Once the Euler Angle Ψ equals 30◦, the

stars stop sliding and the scenario ends. During the scenario, the following data was

recorded in Table 1.

Table 1: Image Plane Dimension vs. Vehicle Orientation - Flat Star Field

Ψ (deg) c′ (in) % Diff c,c′

0 5.94 0
10 5.98 0.65
15 6.1 2.63
20 6.3 5.78
25 6.57 10.02
30 6.94 15.4

Table 1 presents the length of the image plane as a function of Ψ, as well as the

percent difference between the original length of the image frame at the first position
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c versus that of the projected image frame c′. It shows that the image dimension

has effectively stretched, introducing vector mapping errors. Therefore, a different

approach was needed that removed any dependency on Ψ.

3.5.2 Spherical Surface Analysis. With an understanding of the limitations

of the flat surface approach, as well as knowledge of the pinhole camera model, the

next obvious surface shape to analyze was the spherical shape. If the previous example

were reset, this time with a curved star field surface with center of curvature coincident

at the vehicle’s center of rotation, it would look as shown in Fig. 49, where R is the

fixed radius of the curved surface, M is fixed camera mount position, the red and

green stars lie at the outermost points of the camera’s FOV φ, and S is the arc-length

of the curve enclosed by them.
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Figure 49: SphericalSurface Geometric Analysis

If the same tracking scenario were repeated by sliding the stars across the curved

surface together, it would be seen that the length of the projected image plane c
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would not change, since the chord c is defined for a curved surface by

c = 2R sin
θ

2
(42)

where θ is the effective FOV angle measured from the center of curvature, depicted

by the green hashed lines in Fig. 50.
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Figure 50: Spherical Surface Image Plane Analysis

Thus, for a spherical surface with a constant radius and mounted with its center

of curvature set at SimSat’s center of rotation, the projected image plane dimensions

remain consistent for all orientations. With a large enough radius relative to the FOV,

the height h of the arc S is kept sufficiently small to allow for an approximation that

all imaged LEDs correspond to inertial frame vectors having a unit length equal to

the radius of the spherical surface. With the analysis of the desired spherical surface

complete, the next step was to specify and produce the surface.

3.5.3 Dome Specification and Production. To provide a complete star field

surface that encompassed all possible SimSat orientations, a hemispherical dome con-
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cept was adopted. Hemispherical domes are widely available on the market, with most

made of acrylic. These acrylic domes are manufactured via vacuum forming, where a

heated sheet of acrylic is placed over a vacuum chamber. When vacuum is formed,

the heated acrylic will be drawn into the chamber and shape itself into the contours

of a dome. Some methods utilize a precision-made mold in the vacuum chamber to

shape the dome to exact specifications. Domes formed without a tailor-made mold

are known as free-vacuum formed.

Due to the exploratory nature of this research, a costly mold-formed dome was

not desired. Instead, a cost-effective acrylic free-vacuum formed dome was sourced

from the market. The critical dimensions given to the manufacturer were the diameter

and height of the dome, which were specified at 62 in and 11.50 in, respectively. The

height specification had a manufacturer’s tolerance of± 0.25 in due to the free-vacuum

forming process. Another production trait of all vacuum-formed domes is that the

dome thickness varies from the outer diameter of the dome to the inner portions of

the dome due to the material stretching unevenly to form the dome shape. For shallow

domes, such as the specified dome, the variation is small.

The dome specifications communicated to the manufacturer and the associated

expected dimensional variations resulted in a dome design with the following charac-

teristics (in British Standard units):

• Outer Diameter: 62 in

• Dome Height: 11.50 in (± 0.25 in)

• Spherical Radius: 48.135 in (nominal)

• Angular Coverage: 80◦

• Outer Flange Length: 1.5 in

• Dome Material Thickness at Base: 0.25 in
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• Dome Material Thickness at Apex: 0.2036 in (approximately 80% difference)

• Interior Surface Area: 3384.41 in2

• Weight: 37 lbs

• Volume: 854 in3

Figure 51 illustrates the dome design using SolidWorks. The thickness variation results

in a small variation of the inner surface radius from the apex to the edge. The expected

shape of the interior surface of the dome is therefore not perfectly spherical but

a prolate spheroid, with a semi-minor axis xminor equal to 47.98 in in the horizontal

and a semi-major axis xmajor equal to 48.03 in in the vertical, also shown in Figure 51.

Since the dome’s angular coverage is 80◦ total, the radii only varies from 48.033 in to

48.010 in, or less than 0.05% difference.

Elliptical Properties 

xminor 

xmajor xmajor=48.03 in 

xminor=47.98 in 

Figure 51: Hemispherical Dome Design Sketch
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After the dome was received from the manufacturer, the inside surface was

sanded and painted flat black in order to mask out the overhead lighting of the

surrounding laboratory, as well as to provide a not-reflective background for the LEDs.

During the installation process, discussed in the next section, the dome was precision

measured to determine its conformity to the design specifications. While some radial

variation was expected, too much surface variation could introduce image projection

inconsistency, albeit to a smaller degree than with the flat surface case. Figure 52

depicts the resulting measurement of the interior dome surface as compared to the

design specification.

Good Concentricity 

Marginal Concentricity 

xmajor= 38.88in 

28.60 in 

Actual Dome: 

xminor= 

Figure 52: Dome Sketch with Actual Contour Measurement Overlayed

The results of the preliminary measurements showed that the actual surface did

not completely conform to the design dimensions for the interior surface, evidenced

by the blue line beginning at the apex point of the inner dome surface. Tracing the
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blue line from this point, it soon crosses through the thickness of the designed dome,

turns back downward in concentricity with the design dome outer surface, before

again crossing through the design dome notional surface. The approximate elliptical

dimensions describing the actual dome inner surface contour are a semi-minor axis

xminor equal to 28.60 in in the vertical and a semi-major axis xmajor equal to 38.88 in

in the horizontal. This corresponds to percent differences of dv of 50.71% and dh

of 20.95%, where dv and dh are percent differences corresponding to the values of

the vertical and horizontal semi-major axes, respectively. Section 3.7.2 discusses the

methodology used in this research to evaluate the dome surface.

3.5.4 Dome Installation and Measurement. Mounting the dome required

precision measurements of the dome’s finished dimensions to insure the apex of the

dome was closely centered over the air bearing pedestal. Once the dome and the

support frame were roughly mounted over the desired location, a FARO Arm precision

measurement tool was utilized to precisely locate the dome. The first component that

was measured was the air bearing cup, since the center of the cup is defined as the

center of the SimSat inertial frame. Once the center of the spherical cup was found

in three-dimensional space, the coordinate reference system within the measurement

program was set at this point. All subsequent measurements were then made with

respect to this inertial origin. The cup was found to have a radius of approximately

4.33 in, which matched the known specifications of the air bearing. Figure 53 shows

the cup being measured with the FARO Arm probe.

With the inertial coordinate system set, the next step was to position the dome’s

radial center as close as coincident with the inertial reference frame as possible. This

was done by measuring the inner surface of the dome, at which point the software

computes a central point to the approximated sphere being measured. Figure 54 shows

a photograph of the dome surface being measured.
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Figure 53: Spherical Air Bearing Cup Measurement

The differences between this central point and the inertial origin previously

measured are the remaining adjustments to be done in the x and y directions. Once

these slight adjustments were complete, the dome’s position was measured one final

time. It is important to note that even with the differences between the design and

actual dome radii, such difference was judged to be minor since the overall shape

of the actual dome conformed well enough to the design specifications. Therefore,

the apex of the inner surface of the dome was placed within 0.125 in centered and

approximately 48 in above the inertial origin.

In order to center any of the patch boards onto the dome, a visual indicator

was necessary to locate the apex of the dome. To aid in this, a 3-axis laser level was

placed over the cup so that the negative z-axis laser indicator was located over the

lowest point of the cup. This centered the laser level and allowed the positive z-axis
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Figure 54: Dome FARO Arm Probing

laser to indicate the intersection of the inertial z-axis and the the dome. The laser

level is shown resting on a clear acrylic plate and indicating the apex of the dome in

Fig. 55.

With the dome mounted, measured, and precision located, the star field is ready

for mounting and wiring the LED patch boards. However, the next discussion will

focus on the development of the star pattern recognition and attitude determination

algorithm that will rely on the configuration of the patch boards and their placements

on the dome.
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Laser Point 

Figure 55: Laser Level Alignment and Apex Location

3.6 Matlab® Algorithm

The algorithm described in this section is based largely on the Boeing SAA algo-

rithm discussed in Section 2.4.2 by Needelman (14). The following are the variations

implemented for this research effort.

3.6.1 Configuration. The first step involves setting key configuration param-

eters used by the other portions of the algorithm. These include camera settings, star

detection settings, star catalog size ∆, and physical configurations such as the dome

radius and LED spacing. The position in meters and the orientation of the star tracker

reference frame with respect to SimSat body frame in Euler Angles is also set.

3.6.2 Common Functions.
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3.6.2.1 Star Detection. The first portion of star detection was men-

tioned in Section 3.4.1.3, where pixel values were passed through intensity and area

threshold values. The second portion of the star detection function is centroiding, in

which a basic Matlab® function is used for centroiding the pixel areas that passed

the threshold test. The third portion assigns an instrument magnitude to each LED.

Matlab® readily reports an intensity value between 0 and 255 for each pixel in the

converted gray scale image. However, with multi-pixel areas containing many pixels

with varying intensity values, the average intensity of the pixels within the pixel area

of the LED is computed, giving each LED a statistically smoother, characteristic mag-

nitude. The magnitude is then normalized against the median LED area in the image

to improve the spread of LED-specific instrument magnitudes.

3.6.2.2 Vector Mapping. Using the known values for the image frame

dimensions and the 48 in radius of the dome, mapping the vectors to the LEDs in the

camera frame can be done in a straightforward fashion. First, the LED pixel coor-

dinates are transformed into camera frame spatial coordinates using the Matlab®

cpt2tform function. Then, using a variation of Eq. (9), the vectors in the star tracker

frame can be mapped as follows:

v̂s = [xS yS zS] (43)

where xS is a function of the set dome radius R and the camera mounting distance

M , and is defined by

xS =
√

(R−M)2 − y2
S − z2

S (44)

From Eq. (44), the advantage of the spherical dome is demonstrated. With a known

radius R and set mounting position M , closely approximating the observed LED
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positions to lie on the surface of the sphere is facilitated. Additionally, converting the

vectors in the star tracker frame to the body frame involves two steps: rotate the

vectors using the known Euler Angle orientation of the star tracker frame, then add

the position vector of the star tracker frame to the LED vectors. The resulting body

frame vectors are used to compute the angular separations. This process is illustrated

from left to right in Fig 56.
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Figure 56: Algorithmic Vector Frame Transformation Illustration

3.6.2.3 Angle Calculation. Because the vectors now used are no longer

unit vectors, the original equation to calculate the angular separation θ between two

vectors, Eq (11), is now rewritten to apply to the non-unit vectors in the body frame

as

θB = arccos

(
a{b̂} · b{b̂}

|a{b̂}||b{b̂}|

)
(45)
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It may be noted that using the angular separations between the tracker frame vectors

would also suffice, as long as all angular measurements and comparisons are made

with respect to the vectors in the same frame.

3.6.3 Calibration. Prior to taking measurements for star cataloging and

tracking purposes, the algorithm must have reasonable error data with which to imple-

ment in the pattern recognition algorithm, as discussed in Section 2.4.5. Specifically,

these are the ∆m, εseparation, and εposition values. However, instead of utilizing the

covariance matrices from the QUEST algorithm to derive these values for ε, a basic

statistical approach was instead implemented in the algorithm which assumes that

the 1σ errors in measured LED separation and position are due to non-systematic,

or random, noise which is approximately Gaussian. This assumption is critical, since

errors caused by noise or distortions due to the camera optics, the imperfect spherical

shape of the dome, or algorithm malfunctions should be systematic, and therefore

may be distinguished from the random noise during analysis.

Similarly, the ∆m, or threshold range of individually LED instrument magni-

tudes, was also assumed Gaussian; thus, the maximum of the calculated 1σ values of

error for the LEDs is designated εmagnitude in the algorithm. Also, from Fig. 32, it is

expected that the distribution of angular measurements fall within a maximum of five

separate ranges, since the 3×3 grid of LEDs is only capable of producing pair combi-

nations having 5 distinct, measurable angular separations. Thus, the maximum of the

1σ values for the measured angles is the εseparation. εposition is similarly determined for

each coordinate component of the LED position vector. However, knowing that the

physical configuration of the pattern board maintains an approximately 8 mm spacing

between LEDs, any 1σ value greater than approximately 1.3 mm could confuse the

algorithm if the direct match test fails, since ±3εposition would place it within the error

range of neighboring LEDs.
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The calibration algorithm begins with inputting the current SimSat orientation

read from the IMU in Euler Angles. If the position is the home position, the IMU

is zeroed to establish a zero-orientation state in the inertial frame. The algorithm

then records the LED magnitudes and maps the vectors in the body frame. Next,

the body frame vectors are transformed into the inertial frame using the initial Euler

Angles. The calibration algorithm will capture multiple images for the desired number

of positions to determine the statistical values of the LED magnitude, LED position

coordinates, and pair angular separations across the total number of recorded obser-

vations. Additionally, the first image recorded is used to calibrate the spatial (y, z)

coordinates of the image frame to facilitate the transformation from pixel coordi-

nates to the star tracker reference frame coordinates. Using a specified LED pattern

with known LED spacing, the algorithm queries the user to pick the locations of the

detected centroids of the appropriately spaced LEDs. An example is shown in Fig. 57.

Figure 57: Image Frame Calibration Screen
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Since the horizontal and vertical spacing of the LEDs is known, the algorithm per-

forms a linear projective transformation based on the relationship between the pixel

coordinates of the centroids and the LED spacing. Four measurements are taken and

averaged on this step. With the correct coordinate transformation information, cal-

ibration produces the standard deviation information for the three parameters, and

concludes with the output and storage of the σ error data. Histogram plots for the

numerous measurements are produced as well.

3.6.4 Cataloging. Cataloging the vectors begins with inputting the known

SimSat orientation at the moment the image is taken, similar to the first step of

Calibration. The major differences are the long-term storage of vector and magnitude

information, as well as the creation of the PC discussed in Section 2.4.6. Since the

system concept used in this research involves relatively few LED as compared to

the space-representative versions, stars are sorted in the star catalog according to

instrument magnitude, not declination.

3.6.5 Pattern Recognition. Other than applicable changes previously dis-

cussed, the pattern recognition algorithm proceeds as outlined in Sections 2.4.2, 2.4.3,

and 2.4.5.

3.6.6 Attitude Determination. The QUEST algorithm is unchanged with re-

spect to the description in Sec. 2.5.2 except that the estimated optimal quaternion

is converted into a rotation matrix in order to perform the requisite vector trans-

formations. However, it is noted that the current pattern recognition algorithm only

utilizes two vector observations pairs, versus the full set of vector pairs it is capable

of analyzing. Since the angle algorithm only analyzes two pairs of stars at a time, this

utilization of the QUEST algorithm is appropriate.
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3.7 System Validation

Three tests were conducted at the conclusion of this research effort in order to

validate the concepts explored throughout the research. The camera lens and expo-

sure settings were left unchanged from the settings used in the preliminary analysis

discussed in Section 3.4.3; as a consequence, the laboratory lights were not dimmed.

Similarly, the intensity threshold and pixel area threshold were held at 4% and 50

pixels, respectively.

3.7.1 LED Testing. Without consistent LED magnitude measurements, the

algorithm logic would have a difficult time correctly matching the corresponding

LEDs. Furthermore, since magnitude is the primary criteria for LED comparison

in the angle algorithm, the efficiency by the which the algorithm processes through

the star catalog depends largely on the consistency of the stored magnitude informa-

tion. Therefore, a test was necessary to determine the measurement consistency of

the LED magnitudes. The test utilized a fixed pattern of 9 LEDs all controlled with

PWM set at the maximum duty cycle of 1,000 microseconds The patch board was

kept at the apex location of the dome while images were recorded at five different

SimSat orientations, or positions. Fifty images were recorded at each position for a

total of 250 observations. Each of the 250 images were passed through the calibration

algorithm, concluding with statistically analyzed data to determine the measurement

distributions of magnitude, as well as position and angular separations. Figure 58

shows the setup for this test at position 1.

3.7.2 Dome Surface Testing. The utility of the complete system under in-

vestigation in this research effort wouldn’t be fully realized unless the dome’s physical

characteristics allow for consistent magnitude and angular separation measurements.

The quality of the measurements in this respect will depend on the consistency of
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Figure 58: LED Test SimSat Position 1

measurement across the surface of the dome. To test this aspect, two LEDs were acti-

vated on a single patch board representing the maximum and minimum PWM settings

of 1,000 microseconds and 1 microsecond. The same LEDs were imaged 50 times at

three different locations on the dome, with each position’s Euler Angles reported by

the IMU inputted into the algorithm. For each position, the same patch board is

imaged near the boresight to ensure that the true LED brightness and angular sep-

arations are maintained. Any systematic variations in the recorded LED magnitudes

and/or the angular separations could then be attributed to the slightly ellipsoidal

shape of the dome. Figure 59 depicts SimSat at Position 1 of this test, under the LED

pair at the apex of the dome.
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Figure 59: Dome Test SimSat Position 1

Similarly, Figure 60 depicts SimSat at Positions 2 and 3 of this test, under the LED

pair repositioned at two points within the dome.

3.7.3 Algorithm Testing. In order to determine whether the measurements of

the LED magnitudes, position vectors, and angular separations are usable for accurate

star pattern recognition and attitude determination, a simple test of the algorithm

was performed on a pattern of 5 LEDs with PWM settings of 1,000, 500, 400, 200,

and 1 microseconds, respectfully. In this test, the objective was to measure and cata-

log the LED pattern from SimSat’s home position, and verify that the algorithm was

capable of matching the star data from different angular orientations and estimating

an optimal quaternion to describe the orientation of the vehicle. A catalog size ∆ of
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Figure 60: Dome Test SimSat Positions 2 (left) and 3 (right)

100 arcseconds was chosen for this test. The test was performed across 5 positions.

Prior to the algorithm test, a similar procedure for calibrating the measurement sys-

tem as detailed in Section 3.6.3 was implemented. No changes to the camera optics or

star detection parameters were made. The test can then be described by the following

procedure:

1. Configure the algorithm parameters, and specify a catalog size ∆

2. Calibrate the image across five positions to determine the εmagnitude, εposition,

and εseparation

3. Set SimSat at the desired position and run algorithm to determine A

4. Set SimSat at new position and repeat Step three for all remaining positions.
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5. Compare the estimated attitude to the IMU data previously recorded at each

position.

Figure 61 shows SimSat at Position 1 for this test.

Figure 61: Algorithm Test SimSat Position 1

3.8 Summary

Chapter III presented the methodology used in the development, integration,

and validation of the star tracker reference system concept for SimSat. The critical

hardware and algorithmic considerations made were discussed in detail. Lastly, the

testing procedures used to validate SimSat’s newest external reference system concept

was described.
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IV. Results and Analysis

4.1 Introduction

Chapter IV presents the results and analyses of the concept validation tests

described in Section 3.7, specifically:

1. LED Configuration Test (Test 1)

2. Dome Surface Test (Test 2)

3. Star Pattern Recognition and Attitude Determination Algorithm Test (Test 3)

The data was captured on the Mini-Box PC using Matlab® scripts for exper-

iment execution. This chapter presents a portion of the results of these tests, along

with the accompanying analyses of the complete data collected. Additional results

figures are provided in Appendix A.

4.2 Test 1 Results

This section presents the results of the LED magnitude consistency tests de-

scribed in Section 3.7.1. The goal of Test 1 was to determine and characterize the

variation in recorded multi-positional normalized instrument magnitudes of a repre-

sentative sample of the LEDs used in the final system concept. Figure 62 depicts the

recorded image at Position 1, while Fig. 63 shows the recorded images from the four

remaining SimSat positions. The distribution of magnitude measurements assigned

to each LED over the course of 250 total image collections is illustrated in Fig. 65;

this data is then plotted on a single histogram in Fig. 65 to illustrate the overlapping

measurements. Table 2 lists the averaged values for the LED mean magnitudes and

standard deviations across all five positions. Additional histogram figures showing

distribution data at each position can be found in Appendix A.1.
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Figure 62: Test 1 Snapshot, Position 1

In this test, all of the LEDs were set at the same PWM duty cycle setting. It is

important to note that the algorithm ranks the nine LEDs in each image depending on

the recorded magnitudes, with LED #1 being the brightest. Since the LEDs’ outputs

were extremely close to each other, there was considerable variation in the ranking

order of the LEDs from one image to the next. Thus, the LED associations applied

in this test do not physically pertain to any specific LED, but instead illustrates

the algorithmic sensitivity to overlapping magnitude values. Additionally, a general

trend is seen from Fig. 64 in that magnitude values from Position 4 tended to be

the smallest of the recorded values, and that measurements from Position 2 tended

to be the largest. Furthermore, the data presented in Fig. 65 indicates that while

the LEDs may have the same in-line resistor values and PWM duty cycle, there is a

non-uniform distribution of recorded magnitude measurements, likely due to small-

scale variations in actual resistance values for the resistors, as well as varying light

output characteristics of the individual LEDs. Additionally, each LED was masked
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Figure 63: Test 1 Snapshots, Positions (clockwise from top left): 2, 3, 4, and 5

by hand with black ink which could cause each LED to exhibit unique light outputs.

Overall, it is seen that there is some sensitivity to the viewing angle of the LED from

the camera, overlapping magnitudes can hinder the algorithm’s ability to rank specific

LED brightness values, and that each LED/resistor pair exhibits a characteristic light

output. However, judicious choice of PWM values should allow each LED to reside

within its own unique range of magnitude measurements.

Additional secondary insight was gained from this test, depicted in Figure 66.

The distribution of angular separation measurements clearly show the five distinct an-

gular measurements coinciding with the expected five distinct angular measurements

discussed in Section 3.4.1.2. However, it should be noted that obvious overlap of the

angular separation measurements results from the reduction of the 36 pair angles into

only five measurably-distinct angles.
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Figure 64: Test 1 Magnitude Distribution Across Positions, by LED

4.3 Test 2 Results

The results of the star field surface validation tests discussed in Section 3.7.2

are presented in this section. The objective of this testing is to demonstrate the con-

sistency of measurements across the surface of the dome, specifically of measurements

of the same patch board LED pair placed at three different locations within the dome

represented in Figures 59 and 60. The corresponding images from this test are shown

(enhanced to display the dimmer LED) in Figs. 67 and 68. Note the second star is very

dim, but detectable by the system, and that the patch board is maintained relatively

close to the bore sight of the camera to isolate any viewing angle affects. Similar to

the previous section, the distribution of magnitude measurements assigned to each

LED over the course of 150 total image collections is first illustrated in Fig. 70. Next,

this data is plotted on the same histogram in Fig. 70. Tables 3 and 4 lists the mean

values for the LED magnitudes and standard deviations across all three positions.
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Figure 65: Test 1 Magnitude Distribution Across Positions, Combined

Additional histogram figures showing distribution data at each position can be found

in Appendix A.2.

From Figures 69 and 70, distinct magnitude measurements are seen for each

LED. A trend is noted from Fig. 69 in that the mean recorded magnitude for LED

#1 is highest at Position 3, while LED is the least brightest at Position 3. This trend

suggests a slight variation of the magnitude measurements across the dome, and most

likely indicates that the relative viewing angle to the LEDs changed slightly as a result

of the varying surface contour of the dome. It is also noted from Fig. 70 that the two

LEDs occupy distinct bins on histogram, and that a large separation of values exists

between the two distributions as a result of choosing the maximum and minimum

PWM settings for each LED. Additionally, it is observed that the distribution for

LED #1 is wider than that of LED #2, due most likely to the higher fluctuations in

magnitude as a result of the larger duty cycle setting for the LED.
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Table 2: Test 1 Mean Instrument Magnitude Data Across All Positions

LED Mean Std. Dev
1 132.67 5.3192
2 119.61 3.2753
3 115.58 2.0250
4 112.92 2.1444
5 110.17 2.0205
6 108.30 1.9913
7 106.05 2.5085
8 103.61 1.9879
9 100.05 2.3919

Table 3: Test 2 Mean Positional Instrument Magnitude Values (Non-Dimensional)

LED
Position 1 2

1 192.10 7.1434
2 192.25 7.1925
3 195.79 6.8189

Avg 193.38 7.0516

In addition to the information gained from analysis of the magnitude measure-

ments discussed above, the key result from this test pertains to the measured angular

separations between the LED pair at each position. Shown in Fig. 71, it can be seen

that the pair angle decreases as the location of the patch board changes from the apex

(Position 1) to the edge of the dome (Position 3), which indicates that the varying

Table 4: Test 2 Standard Deviation Values of Mean Positional Instrument Magnitudes

LED
Position 1 2

1 6.7943 0.9862
2 6.0911 0.9360
3 6.2370 0.9041

Avg 6.6590 0.9510
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Figure 66: Test 1 Angular Separation Distribution Across Positions, Combined

Figure 67: Test 2 Snapshot Position 1

surface contour contributes an off-centered viewing angle on the LED pair. Table 5

contains the mean angular measurement data across all observations.
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Figure 68: Test 2 Snapshot, Positions 2 (top) and 3 (bottom)

Figure 69: Test 2 Magnitude Distribution Across Positions, by LED
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Figure 70: Test 2 Magnitude Distribution Across Positions, Combined

Figure 71: Test 2 Angular Separation Distribution Across Positions, Combined
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Table 5: Test 2 Mean Angular Separation Data Across by Position

Position Mean (arc-sec) Std. Dev (arc-sec)
1 2727 9.715
2 2706 9.805
3 2693 10.24

4.4 Test 3 Results

This section discusses the results from the algorithm test detailed in Section 3.7.3.

The objective of this test is to validate the concept star field LED features as usable

data inputs into a star pattern and attitude determination algorithm. The first step

in this process is the calibration step, performed in a similar manner as the preceding

two tests. The second step was actual implementation and evaluation of the cata-

loging, tracking, star pattern recognition, and attitude determination algorithm. For

both steps, the same 5-LED pattern described in Section 3.7.3 was used.

The test begins with the collection of 50 images at 5 different positions. Fig-

ures 72 and 73 depict the locations of the pattern on the image frame at the corre-

sponding SimSat positions. The top left of Fig. 72 contains a key to aid in visualizing

the established PWM ranking. The recorded SimSat orientation data from the IMU

is listed in Table 6 in Euler Angles (θ1, θ2, θ3), where 1, 2, 3 correspond to the inertial

X-, Y-, and Z-axis, respectively. It should be noted here that, in maneuvering SimSat

into the fifth and final position, SimSat was slightly ’bumped’; the extent of harm to

the recorded IMU data is discussed later in this section.
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Figure 72: Test 3 Snapshot, Position 1
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Figure 73: Test 3 Snapshots, Positions (clockwise from top left): 2, 3, 4, and 5

Table 6: Test 3 IMU Euler Angle Data for Each Position

Position θ1 (deg) θ2 (deg) θ3 (deg)
1 0 0 0
2 -0.0090 2.3 0.0070
3 0.25 -2.1 0.0040
4 3.3 -0.14 -0.028
5 -1.9 0.28 0.19

4.4.1 Test 3 Calibration. The distribution of magnitude measurements as-

signed to each LED over the course of 250 total image collections is illustrated in

Fig. 74. Figure 75 displays a combined histogram of the data in the previous fig-

ure. Furthermore, Table 7 lists the averaged values for the LED mean magnitudes

and standard deviations across all five positions. Additional histogram figures for this

calibration can be found in Appendix A.3.

As evidenced from Fig. 74, a slightly discernible relationship between position

and LED magnitude can be noted. However, the most critical aspect of the magnitude
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Figure 74: Test 3 Magnitude Distribution Across Positions, by LED

Table 7: Test 3 Mean Instrument Magnitude Data Across All Positions

LED Mean Std. Dev
1 146.69 9.2704
2 116.01 10.191
3 87.770 5.1960
4 44.894 6.5327
5 16.612 2.6475

distributions for this patch board configuration is seen in Fig. 75, where each LED

roughly corresponds to a unique magnitude bin across all measured magnitudes, with

very little room for additional unique LEDs measurements. There is small overlap for

some LEDs. These regions of overlap are relatively limited, but when considering the

match criteria for magnitude values in this research effort to be the range ±3εmagnitude,

the effective overlap between magnitude values of specific LEDs becomes considerable.

For example, considering LED #2 from Table 7, ±3 times its standard deviation

centered over its mean magnitude of 116.01 places the mean values of LEDs #1 and

#3 within this range. However, the remaining criteria in the direct match test are
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Figure 75: Test 3 Magnitude Distribution Across Positions, Combined

designed to address this situation, therefore the PWM settings are satisfactory for

this test.

Figure 76 shows the distribution of angular measurements for the LED pairs

comprising the star pattern. Three angular measurements are statistically discernible

here for this pattern, which can be deduced by reexamining Fig. 72. The implication

here is that the pattern recognition algorithm will have a more limited set of unique-

ness criteria to apply in the Direct Match test. Table 8 lists the mean LED pair

separation angles across all positions and their corresponding standard deviations. It

is also reflected here that the match criteria range of ±3εseparation places pair angles

within overlapping bins. Again, the multiple matching criteria used in direct match

test is designed for this scenario.

As mentioned in Section 3.6.3, the calibration algorithm uses input Euler Angles

gathered from the IMU to transform the body frame vectors mapped as discussed

in Section 3.6.2.2 into the inertial frame. How closely the corresponding LEDs are
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Figure 76: Test 3 Angular Separation Distribution Across Positions, Combined

mapped back into theoretically the same inertial location determines the error associ-

ated with the LED spatial positioning. Thus, Figs. 77 and 78 shows the distributions

of the X-,Y-, and Z-coordinates of the vector observations associated with the 250

images of the the 5 LEDs. Outliers are clearly visible from Fig. 77 (a) at approximate

X-coordinates 0.75 mm, 8.5 mm, and 17 mm. This was the result of the slight ’bump’

of SimSat prior to recording the last image. Thus, the IMU’s rate limits were momen-

tarily exceeded, which resulted in unreliable position measurement data at this point.

However, the data was recorded and the test proceeded as planned.

Figure 78 shows a small non-Gaussian distribution of less than 1 mm for the

Z-coordinates. The inertial Z-coordinates are approximated values derived from the

formulation of the tracker frame vectors in Eq. (44), specifically in the (R−M) term.

This method does not take into account the non-linear projections of the objects on

the spherical surface to the flat image plane, depicted in Fig 50, which is a function

of the distance of the object on the image plane to the bore sight and the height h of
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Table 8: Test 3 Mean Separation Angle Values Across All Positions

LED Pair Mean Angle (arcseconds) Std. Dev (arcseconds)
1 1,325 8.871
2 1,359 5.229
3 1,377 8.369
4 1,388 4.901
5 1,913 4.957
6 1,919 5.972
7 1,925 7.368
8 1,950 5.838
9 2,703 9.195
10 2,746 9.675

the spherical arc. Because the radius of the sphere is relatively large, and the FOV is

kept small, this effect is reduced to the small degree of error seen in Fig. 78.

In order to better visualize the complete calibration ’picture’, Figure 79 shows a

scatter plot of LED vector coordinates in the X-Y internal plane. The figure is shown

from roughly the vantage point of SimSat. Within it, plots of the patch board pattern

are displayed for each position recorded during the calibration step. The sizes of the

markers indicate the relative brightness of a particular LED with respect to the other

LEDs in its corresponding pattern. In other words, the magnitude ranking of each

LED is depicted by the size of the marker. The outliers resulting from the SimSat

’bump’ during Position 5 is seen falling outside the closer LED groupings, which will

affect the error estimate LED position. However, noting the black markers indicating

the averaged X-Y coordinates for all positions, the overall LED position results re-

main very close to Position 1. Therefore, instead of reproducing the experiment with

more optimal measurements, it was decided to use a set of measurements with some

increased inherent error to test the robustness of the algorithm.

To derive the final error constants necessary for the star pattern recognition

algorithm, the maximum values of the averaged multi-positional standard deviation
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(a) X-Coordinates

(b) Y-Coordinates

Figure 77: Test 3 LED X, Y Inertial Coordinate Distributions, Combined
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Figure 78: Test 3 LED Z Inertial Coordinate Distributions, Combined

values for magnitude, separation angle, and position are set at εmagnitude, εseparation,

and εposition, respectively. Table 9 lists the calculated error constants ε for use by the

star pattern recognition algorithm. There is some overlap within the distributions of

magnitude, separation, and position values when considering the 3ε range of these val-

ues, which is not optimal. However, these ranges of overlap are localized and therefore

are utilized by the algorithm to narrow the list of possible match candidates.

Table 9: Test 3 Algorithm Error Values

εmagnitude 10.191 (unitless)
εposition 1.9861 (millimeters)
εseparation 9.675 (arcseconds)

4.4.2 Test 3 Star Pattern Recognition and Attitude Determination. With the

measurement calibrations completed, the image seen in Fig. 72 served as the image

viewed when the body and inertial frames are aligned, in order to build a star catalog,
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Figure 79: Test 3 Mean X-Y Coordinate Scatter Plot

as outlined in Section 3.6.4. Next, the images represented in Fig. 73 were evaluated by

the attitude determination algorithm one at a time. The algorithm was executed on

one image at each position. The ε error values found in the previous section were used

to facilitate star matching within the star pattern recognition algorithm. The output

of the QUEST algorithm is a quaternion vector
→
q , which is then converted to a 3-2-1

rotation matrix in order to plot the vector visualizations. Finally, the quaternions are

converted to Euler Angles here for ease of presentation. The following sections present

the results from these tests.

4.4.2.1 Position 1 Estimation Results. The first position test was a

baseline test of the algorithm, where no change in images, and thus no apparent

change in position, is actually made. The star pattern recognition algorithm easily

matched each LED from both images as seen from the top-right of Fig. 80, which

illustrates the vector visualization of the results, the star tracker, the body frame,

and the inertial frames. The blue asterisks represent the cataloged star locations,
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while the magenta lines represent the algorithm-mapped inertial vectors. The degree

to which these two objects coincide indicates how well the cataloged and tracked

observations physically matched. Note that the close-up view of the body and inertial

frames shows the two coordinate frames to be coincident.
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Figure 80: Test 3 Attitude Estimation Visualization, Position 1

Some useful insight about the algorithm was gained from the data in Table 10,

the estimated body frame Euler Angles with respect to the inertial frame are shown

compared to the IMU measurements. There is some disagreement between the two

sets of Euler Angles. Since the images used for cataloging and attitude determination

are the same, there should be no variations in LED centroiding. Therefore, these errors

may be attributed to algorithm noise.

4.4.2.2 Position 2 Estimation Results. The results of the attitude esti-

mation for the second position are described below. Again, the star pattern recognition
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Table 10: Test 3 Attitude Estimation Results, Position 1

IMU (deg) Algorithm (deg) Abs. Diff (deg)
θ1 0 -0.0335 0.0335
θ2 0 0.0335 0.0335
θ3 0 0.0005 0.0005

algorithm easily matched each LED from both images. Figure 81 illustrates the vector

visualization of the results, where the the star tracker, body frame, and inertial frames

are depicted. From Fig. 81, the catalog and mapped inertial coordinates closely match.

The roughly 2.3 degree rotation about the inertial Y-axis is depicted by the close-up

view of the body and inertial frames. Table 11 lists the estimated Euler Angles for this

test. The Y-axis rotation angle is in close agreement, while the X and Z-axis rotation

angles differ as much as 0.18 degrees from the IMU data.
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Figure 81: Test 3 Attitude Estimation Visualization, Position 2
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Table 11: Test 3 Attitude Estimation Results, Position 2

IMU (deg) Algorithm (deg) Abs. Diff (deg)
θ1 -0.0090 0.1732 0.1822
θ2 2.3130 2.3273 0.0143
θ3 0.0070 -0.0389 0.0459

4.4.2.3 Position 3 Estimation Results. The third position test pro-

ceeded similar to the previous runs. The LEDs were readily matched by the star

pattern recognition algorithm. From Fig. 82, the catalog and mapped inertial coor-

dinates closely match. The roughly -2.06 degree rotation about the inertial Y-axis is

depicted by the close-up view of the body and inertial frames. Table 12 lists the esti-

mated Euler Angles for this test. The Y-axis rotation angle is again in close agreement

for this test. A roughly 0.72 degree difference is noted for the X-axis rotation.
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Figure 82: Test 3 Attitude Estimation Visualization, Position 3
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Table 12: Test 3 Attitude Estimation Results, Position 3

IMU (deg) Algorithm (deg) Abs. Diff (deg)
θ1 0.2490 -0.4672 0.7162
θ2 -2.0760 -2.0595 0.0165
θ3 0.0040 0.2312 0.2272

4.4.2.4 Position 4 Estimation Results. The results of the fourth atti-

tude estimation test produced closely-agreeing results. As before, no notable issues

with LED matching. From Fig. 83, the catalog and mapped inertial coordinates closely

match. An approximate rotation angle of 3.2 degrees about the inertial X-axis is de-

picted by the close-up view of the body and inertial frames. The Euler Angle results

are listed in Tab 13. All estimated Euler Angles closely agree, with a maximum dif-

ference of approximately 0.11 degrees on the Z-axis Euler Angle.
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Figure 83: Test 3 Attitude Estimation Visualization, Position 4
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Table 13: Test 3 Attitude Estimation Results, Position 4

IMU (deg) Algorithm (deg) Abs. Diff (deg)
θ1 3.3370 3.2338 0.1032
θ2 -0.1370 -0.1171 0.0199
θ3 -0.0280 0.0848 0.1128

4.4.2.5 Position 5 Estimation Results. The fifth attitude estimation

test results are shown below. It is important to note that the IMU data was expected to

be unreliable due to the accidental ’bumping’ of SimSat during manual maneuvering.

The LED matching by the star pattern recognition algorithm proceeded smoothly.

From Fig. 84, the catalog and mapped inertial coordinates are still in relatively close

agreement. The estimated Euler Angles for this test are listed in Tab. 14. The Euler

Angles for both sets remain in relatively close agreement given that the IMU data is

not completely reliable in this test. Based on the successes of the previous experiments,

this test helps to highlight a scenario where the attitude estimate may be used to

correct the IMU bias.

Table 14: Test 3 Attitude Estimation Results, Position 5

IMU (deg) Algorithm (deg) Abs. Diff (deg)
θ1 -1.8820 -1.9375 0.0555
θ2 0.2800 0.0410 0.239
θ3 0.1910 -0.5982 0.7892

4.4.2.6 Attitude Estimation Overall Results. Table 15 lists the perti-

nent statistics of the absolute differences between the IMU-measured Euler Angles

and the calculated Euler Angles. Computing across the five positions, the algorithm

returns a minimum Euler Angle difference of approximately 0.0005 degrees and a

maximum of about 0.7892 degrees. Overall, the averaged maximum angular deviation

across the three Euler Angles from the IMU measurements was 0.5815 degrees. There-
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Figure 84: Test 3 Attitude Estimation Visualization, Position 5

fore, the attitude solution returned by the algorithm under the described conditions

is accurate to within less than one degree in any Euler Angle direction.

Table 15: Test 3 Attitude Estimation Results, Position 5

Min (deg) Max (deg) Mean (deg) Std Dev (deg)
θ1 0.0335 0.7162 0.2181 0.2842
θ2 0.0143 0.2390 0.0646 0.0978
θ3 0.0005 0.7892 0.2351 0.3213

Averaged 0.0161 0.5815 0.1726 0.2344

4.5 Summary

Chapter IV presented the results and analysis of the concept validation tests

in order to validate the concept developed in this research effort. Regarding the re-

sults of the tests, all aspects of the system concept performed to an acceptable level,
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with some exceptions. First, the LEDs exhibit characteristic light outputs given equal

voltage inputs. Second, the elliptical surface contour of the dome causes variational

measurements of both magnitude and separation angle. Suggested approaches for re-

solving these issues are presented as future work in the next chapter. The testing

discussed in this section demonstrates that the external reference system concept for

SimSat is capable of providing relatively accurate attitude estimates. The results fur-

ther indicate that the current PWM methodology only provides sufficient range of

magnitude for five unique magnitude measurements, while the fixed pattern arrange-

ment of the LED patch board allows for only 3 uniquely-measurable separation angles.

Additionally, using the current dome surface, cataloging of LEDs must be done by

the on-board camera and not through an external source, since there would not be

agreement between the angular separations measured by the two methods.
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V. Conclusion and Recommendations

5.1 Conclusion

The objectives of this research effort were to investigate the critical parame-

ters for a lab-scale star tracker-based external reference system for AFIT’s SimSat,

integrate a working concept of it within the current SimSat laboratory, and character-

ize the performance of the concept system through initial validation testing against

key algorithmic requirements. The effectiveness is determined by implementing the

necessary software coding into SimSat’s current programming software and utilizing

the data provided by the concept reference system as algorithm inputs. The result of

this research effort is a preliminary working concept of a unique star tracker-based

external reference system for SimSat to act as an initial point for subsequent research

towards a precise, accurate, and robust final solution.

The research methodology was designed to parallel the analysis of space-rated

star trackers as much as possible. With the selection of an industrial-purpose digital

camera, the selection and configuration of the star representative LEDs and the star

field surface had to made such that the entire system resulted in consistent intensity

and spatial measurements with manageable system noise. The first key aspect of the

system, the LED configuration, was addressed through preliminary analysis of the

critical system-specific lighting and image collection parameters. The key parameters

for the system were identified to be the lens focus and aperture setting, the camera

exposure setting, the algorithm star recognition settings, and the LED PWM set-

tings. With these parameters identified, the LED configuration was validated through

a multi-positional, multi-image test of the LED patch board from various viewing

angles. It was determined through this testing that identically-commanded LEDs

produced measurably different outputs relative to each other, and that these outputs

varied systematically with different viewing angles of the LEDs. Furthermore, it was
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seen that overlaps in the magnitude measurements caused inconsistent ranking of the

LED, which is a critical parameter in the cataloging and matching of LEDs. Thus,

this illustrates the star recognition algorithm’s sensitivity to overlapping magnitude

values. A secondary finding from this test was that the uniform 3×3 LED square patch

board configuration produced five discrete angular measurements. This is the limit to

the patch board’s flexibility, since the 36 total pair angles provided by nine LEDs is

reduced to only five measurable angular separations. Therefore, the symmetry of the

final patch board configuration, while easy to construct, limits the overall potential

to provide the requisite unique angular measurements. Possible solutions to this are

suggested as future work in the next section.

The next portion of this research addressed the star field surface on to which

the LEDs would be mounted. It was found from the results of previous research,

along with additional analysis provided in this research effort, that a flat surface,

while simplistic, did not provide the necessary measurement consistency required of

a star-tracker based external reference system. Thus, a spherical surface was chosen

in order to better conform to the pinhole camera model for space-rated star trackers.

Initial precision measurements of the interior surface of the dome showed that it is

appreciably elliptical, caused by a low-cost production process which is unable to

produce a perfect sphere.

Formal testing of the star field surface utilized a star pair produced by the same

patch board, imaged at three different positions on the sphere near the camera’s bore

sight. It was seen from testing that the separation angle decreased steadily over the

course of the three images totaling 34 arcseconds, or a 0.77% reduction in measured

angular seperation. Thus, the testing showed that a measurable, systematic change in

separation angle resulted from the patch board’s changes in location, most likely due

to an effective change in viewing angle on the LED patch board as the surface contour
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is no longer perpendicular to the camera boresight from these off-apex locations. The

1.9% difference in LED magnitude at the first and last positions also support this

conclusion. Suggestions to possibly address this issue is discussed as future work in

the next section. However, this drawback is not expected to affect the overall perfor-

mance of the system, since this affect should not be appreciable for small FOVs. It

does, however, limit cataloging of the star field to on-board vector catalog measure-

ments, such as using the star tracker itself. An additional finding from this test was

that setting the LEDs used to make up the pair at the maximum and minimum PWM

settings produced two vastly different magnitude measurements. Furthermore, it was

seen that the higher PWM setting produced a wider distribution of magnitude mea-

surement values, presumably from the increased LED flicker caused by the increased

PWM duty cycle. Suggestions to address this issue is discussed in the next section.

The final portion of this research effort was to implement an attitude determi-

nation algorithm in order to validate the entire system. After selecting the algorithms

used in this research based on prior related research and the desire to reduce complex-

ity, a custom-tailored variation of Boeing’s SAA star pattern recognition algorithm,

as well as the QUEST attitude determination algorithm, were coded into Matlab®.

Testing of the algorithm proceeded in two stages. First, the chosen star pattern was

used to calibrate the algorithm and determine the statistical error constants utilized

later. The results from this stage show that for a pattern of five LEDs with each LED

at a different PWM setting, an acceptable spread of measured magnitudes results,

allowing each LED to have a unique, characteristic intensity. Again, the flicker effect

is noticeable from the increasing distributions of the brighter LEDs. However, using

the five selected PWM values, it was seen that very little room was left for additional

LEDs to obtain a unique measurement distribution, especially with increasing distri-

butions. Therefore, an upper limit exists for the number of PWM values that could be
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utilized in this current configuration. A suggestion for future work to address this is-

sue is presented in Section 5.2.1. Overall, the necessary error constants for magnitude,

spatial position, and angular separation were determined for the next step.

Applying the error constants determined from the algorithm calibration, the

star pattern and attitude determination algorithms were executed at five positions to

measure the effectiveness of the algorithms using the inputs from the concept system.

What was first noted from the results is that a ±0.033-degree bias on the first and

second Euler Angles existed within the algorithm, independent of image data noise.

This algorithmic noise is small, however, and because it is systematic it can be readily

addressed through future research. The affect of the overlap of the 3ε ranges did not

affect the star pattern recognition algorithm. Overall, the stars matched on the first

iteration, and the first rotation matrix derived from the quest QUEST algorithm

was sufficient to satisfy the direct match test. Thus, the algorithms were quickly and

successfully executed when compared to the recorded IMU data. When the IMU data

was seen to be unreliable, the algorithm returned an attitude solution that was still

close to the unreliable IMU data, and in light of the successes of the previous tests,

demonstrates its potential to be utilized to correct the false IMU readings.

Two criteria regarding the accuracy of the system may be applied to the concept

system. First, the vector mapping accuracy of the star tracker system, typically related

to the bore sight angle by Eq. (10) in space-rated applications, was defined for this

research effort to be the accuracy with which the system mapped the LED to within

the 3εposition region centered about its inertial location on the LED patch board. It

was then determined from the calibration prior to Test 3 that the system could map

an LED back to its inertial location within 2 mm. Second, the accuracy of the attitude

solution was found to be less than 1 degree of any Euler Angle when compared to the

reference IMU orientation values for a select region of the dome.
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In conclusion, the critical parameters for a lab-based star tracker have been

studied and we have found that an indoor star tracker-based reference system capable

of accurate attitude determination can be built. Future work must be done in order to

evolve the concept developed in this research into an accurate, robust final solution.

Overall, this research and the system it produced has introduced AFIT with a new

area of research into the field of spacecraft attitude determination.

5.2 Recommendations for Future Development

Below are specific areas of improvement and research areas that apply to the

current system concept.

5.2.1 Star Representation Improvements. The LEDs being used to repre-

sent stars are currently larger than true point-source light sources, are powered by an

analog-emulating digital PWM from an electronic prototyping board, and are phys-

ically configured in a symmetrical fashion due to the need to rapidly implement a

working system concept. With the algorithm producing initially-satisfying attitude so-

lutions using the current LEDs, a next course of action is to utilize smaller LEDs that

require no further modification and still produce Lambertian light outputs. Smaller

LEDs could also be spaced closer together, thus improving the star density over the

FOV. Reducing the LED size would vastly improve errors caused by centroiding noise

and would allow for future use of more space-representative star trackers with unique

baffles and smaller FOVs.

As seen from this research effort, PWM was an outstanding choice to power the

LEDs from the Arduino Mega as compared to the fixed voltage and resistor method.

However, the two major drawbacks were that the Arduino Mega only has a handful

of true PWM channels, and that the remaining digital channels were accessed in
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sequence using the PWM method described in this research. Therefore, work should be

performed in locating or developing a controller board capable of powering each LED

independently. Additionally, the use of digital PWM resulted in larger distributions of

the measured LED magnitudes at higher PWM settings, or flicker. Furthermore, the

effective range of PWM settings was limited by duty cycles that produce acceptable

amounts of flicker. Thus, the application of a low pass filter to the power applied to the

LED should be considered in order to produce truly analog-like control of individual

LEDs that results in a larger min-max range of brightnesses.

Having the LEDs arranged in a symmetrical fashion greatly simplifies construc-

tion of the numerous patch boards, and producing each patch board to identical

specification further simplifies matters. However, this also reduces the flexibility of

the overall utilization of the LEDs to produce unique star pairs necessary for atti-

tude determination. Future work should be dedicated to determining a more flexible

method to quickly produce multiple LED groupings that could easily be integrated

onto the star field surface. Because of the direct relationship between the LED physical

configuration and the star field, the next section suggests a different approach.

5.2.2 Star Field Improvements. It was determined through measurement

that the star field surface is not perfectly spherical. Although this is not expected

to affect accuracy for the current configuration of the concept system, acrylic domes

similar to the one used by this system can be created to within higher precision

requirements, but at five times the cost. For example, the same size dome was specified

to a different company, which quoted a price of approximately $2,500, since it required

a custom mold for the forming process.

Most importantly, the overall arrangement of the LEDs will govern the star

tracker system’s attitude determination performance. At the conclusion of this re-
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search, only a small portion of the star field is populated with LEDs. In order to

populate the entire surface, further study should be conducted into the best possible

configuration and arrangement of the LEDs on the dome. Using a variation of Eq. (8)

found in Boone’s paper (3), the minimum number of total LEDs on the star field

surface can be determined by specifying a desired average number of stars imaged per

orientation and a desired FOV. If this number is large, regimenting and simplifying

the physical arrangement of the LEDs using the patch board method on the star field

may produce a more rapidly-implementable solution. However, the negative conse-

quence to this is a star field that is less representative of the night sky, limiting the

future application of this system to non-space-rated star trackers. Therefore, solutions

other than the patch board method should be considered. This includes researching

custom manufactured, flexible adhesive tapes with pre-installed LEDs and resistors.

Additional wiring may be specified to allow for independent control of the LEDs. A

second option would be to pursue an advanced image projection method onto the

dome surface. Specialized projectors which allow for image projection onto the dome

inner surface from an off-centered position could allow for a planetarium-like con-

struct. Finally, the method with the most potential for accuracy and representation

may be an approach similar to Boone’s optical simulator which utilizes the star tracker

actuator mount as a laser aiming device to mark the catalog-derived star locations

prior to mounting the star-representative fiber optics at locations on the dome (3).

5.2.3 Algorithm Improvements. The current algorithm may be improved by

determining a closer estimate to the actual location of the LED on the star field

surface. Because the objects on the spherical surface project radially toward the focal

point, their projected distances from the boresight are slightly distorted as a function

of the height of the arc formed by the spherical surface within the FOV. Research

efforts could be dedicated to determining a compensation for this distortion based on
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knowledge of the sphere’s radius and the width of the field of view. Additionally, multi-

positional cataloging will be required when populating the entire dome with LEDs.

The algorithm will then need to be integrated into the SimSat SIMULINK control

system. Finally, research into advanced algorithms, specifically non-dimensional, or

invariant, methods should be performed as a study into their abilities to mitigate such

distortions.
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Appendix A. Supplemental Results Figures

A.1 Test 1 Results

Figure 85: Test 1: Magnitude Distribution at Position 1, by LED

141



Figure 86: Test 1: Magnitude Distribution at Position 2, by LED
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Figure 87: Test 1: Magnitude Distribution at Position 3, by LED
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Figure 88: Test 1: Magnitude Distribution at Position 4, by LED
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Figure 89: Test 1: Magnitude Distribution at Position 5, by LED
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(a) Magnitude Distribution at Position 1 (b) Magnitude Distribution at Position 2

Figure 90: Test 1: Magnitude Distribution at Positions 1 and 2, Combined

(a) Magnitude Distribution at Position 3 (b) Magnitude Distribution at Position 4

Figure 91: Test 1: Magnitude Distribution at Positions 3 and 4, Combined

Figure 92: Test 1: Magnitude Distribution at Position 5, Combined
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A.2 Test 2 Results

Figure 93: Test 2: Magnitude Distribution at Position 1, by LED
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Figure 94: Test 2: Magnitude Distribution at Position 2, by LED
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Figure 95: Test 2: Magnitude Distribution at Position 3, by LED
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(a) Magnitude Distribution at Position 1

(b) Magnitude Distribution at Position 2

(c) Magnitude Distribution at Position 3

Figure 96: Test 2: Magnitude Distribution by Position, Combined
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(a) Angular Separation Distribution at Position 1

(b) Angular Separation Distribution at Position 2

(c) Angular Separation Distribution at Position 3

Figure 97: Test 2: Angular Separation Distribution by Position
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A.3 Test 3 Results

Figure 98: Test 3: Magnitude Distribution at Position 1, by LED
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Figure 99: Test 3: Magnitude Distribution at Position 2, by LED
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Figure 100: Test 3: Magnitude Distribution at Position 3, by LED
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Figure 101: Test 3: Magnitude Distribution at Position 4, by LED
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Figure 102: Test 3: Magnitude Distribution at Position 5, by LED
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(a) Magnitude Distribution at Position 1 (b) Magnitude Distribution at Position 2

Figure 103: Test 3: Magnitude Distribution at Positions 1 and 2, Combined

(a) Magnitude Distribution at Position 3 (b) Magnitude Distribution at Position 4

Figure 104: Test 3: Magnitude Distribution at Positions 3 and 4, Combined
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Figure 105: Test 3: Magnitude Distribution at Position 5, Combined

158



Bibliography

1. Astrium. “A Minitiarized Star Tracker Optical Simulator”. URL http://www.

astrium.eads.net/media/document/datasheet_%C2%B5stos_2011-01.pdf.
Retrieved 5 Dec 11.

2. Bar-Itzhack, Itzhack Y. and Richard R. Harman. “Optimized TRIAD algorithm
for attitude determinatio”. Journal of Guidance, Control, and Dynamics, 20(1),
July 1996.

3. Boone, B.G., J.R. Bruzzi, W.F. Dellinger, B.E. Kluga, and K.M. Strohbehn. “Op-
tical Simulator and Testbed for Spacecraft Star Tracker Development”. Optical
Modeling and Performance Predictions II, volume 5967. Aug 2005.

4. Cos, Stefan, Werner Ogiers, Jan Bogaerts, and Stephen Airey. “Image sensors for
space: An overview of APS technology”. Guidance and Control 2007: Proceedings
of the 30th annual AAS Rocky Mountain Guidance and Control Conference, 519.
Jul 2007.

5. Diaz, Kenneth D. Performance Analysis of a Fixed Point Star Tracker Algorithm
for Use Onboard a Picosatellite. Master’s thesis, California Polytechnic State
University, San Luis Obispo, August 2006.

6. Eisenman, Allan R. and Carl C. Liebe. “The Advancing State-of-the-art in Second
Generation Star Trackers”. IEEE Aerospace Applications Conference Proceedings,
volume 1, 111–118. Institute of Electrical and Electronics Engineering, Mar 1998.

7. Eisenman, Allan R., Carl C. Liebe, and John L. Jorgensen. “The New Generation
of Autonomous Star Trackers”. SPIE Proceedings, volume 3221, 524. Sep 1997.

8. Juang, Jet-Nan, Hye Young Kim, and John L. Junkins. “An Efficient and Robust
Singular Value Method for Star Pattern Recognition and Attitude Determina-
tion”, 2003.

9. Lee, S., G. G. Ortiz, and J. W. Alexander. “Star Tracker-Based Acquisition,
Tracking, and Pointing Technology for Deep-Space Optical Communications”.
Interplanetary Network Progress Report, 42(161), May 2005. URL www.tmo.jpl.

nasa.gov/progress_report/42-161/161L.pdf.

10. Liebe, Carl Chrsitian. “Accuracy Performance of Star Trackers - A Tutorial”.
IEEE Transactions on Aerospace and Electronic Systems, 38(2):587–599, May
2005.

11. Lumex. “Lumex LED Technical Data”. URL http://www.lumex.com/specs/

SML-LXL1209SIC-TR.pdf. Retrieved 12 Dec 11.

12. McChesney, Christopher G. Design of Attitude Control Actuators for a Simulated
Spacecraft. Master’s thesis, Air Force Institute of Technology, March 2011.

159



13. McFarland, C. Douglas. Near Real-Time Closed-Loop Optimal Control Feedback
for Spacecraft Attitude Maneuvers. Master’s thesis, Air Force Institute of Tech-
nology, March 2009.

14. Needelman, David D., Rongsheng (Ken) Li, and Yeong-Wei Andy Wu. “Recent
Advances in Stellar Attitude Acquisition (SAA) Algorithms and Procedures”.
AIAA Guidance, Navigation and Control Conference and Exhibit. American In-
stitute of Aeronautics and Astronautics, Inc., Aug 2005.

15. Roach, Neal R., Wayne C. Rohe, and Nathan F. Welty. A Systems Engineering
Approach to the Design of a Spacecraft Dynamics and Control Testbed. Master’s
thesis, Air Force Institute of Technology, March 2008.

16. Shuster, M. D. and S.D. Oh. “Three-Axis Attitude Determination from Vector
Observations”. Journal of Guidance and Control, 4(1):70–77, Jan-Feb 1981.

17. Shuster, Malcom D. “Focal-Plane Represenations of Rotations”. The Journal of
the Astronautical Sciences, 48(2–3):381–390, Apr-Sep 2000.

18. Smith, Noah H. Localized Distortion Estimation and Correction for the ICESat
Star Trackers. Master’s thesis, The University of Texas at Austin, August 2006.

19. Snider, Ryan E. Attitude Control of a Satellite Simulator Using Reaction Wheels
and a PID Controller. Master’s thesis, Air Force Institute of Technology, March
2010.

20. Spratling, Benjamin B. and Daniele Mortari. “A Survey on Star Identification
Algorithms”. Algorithms 2009, 1(2):93–107, Jan 2009.

21. Swenson, Eric D. “Notes from Course: Intermediate Spaceflight Dynamics”.
Spring 2011.

22. Tappe, Jack A. Development of Star Tracker System for Accurate Estimation of
Spacecraft Attitude. Master’s thesis, Naval Postgraduate School, December 2009.

23. Voronkov, Sergey. “The Dynamic Test Equipment for the Star Trackers
Processing”. URL http://www.dlr.de/iaa.symp/Portaldata/49/Resources/

dokumente/archiv5/1008P_Voronkov.pdf. Retrieved 30 Nov 11.

24. Wahba, Grace. “Problem 65-1, A Least Squares Estimate of Satellite Attitude”.
Society of Industrial and Applied Mathematics Review, 7(3):409, Jul 1965.

25. Wiesel, William E. Spaceflight Dynamics. Aphelion Press, Beavercreek, Ohio,
USA, 3rd edition, 2010.

160



Vita

Captain Jorge G. Padro graduated from Northeast High School in Clarksville,

Tennessee. He began undergraduate studies at Tennessee State University in Nashville,

Tennessee where he graduated with a Bachelor of Science degree in Mechanical Engi-

neering in May 2006. He earned his commission through the Detachment 790 AFROTC

at Tennessee State University. His first assignment was at the 846th Test Squadron,

Holloman AFB, New Mexico where he served as a Rocket Sled Test Engineer in Au-

gust 2006. In August 2008, he was assigned to a sister squadron, the 586th Flight Test

Squadron, where he served as a Flight Test Engineer. In August 2010, he entered the

Graduate School of Engineering and Management, Air Force Institute of Technology.

Upon graduation, he will be assigned to the Space Vehicles Directorate, Air Force

Research Laboratory.

161



REPORT DOCUMENTATION PAGE  
Form Approved  
OMB No. 0704–0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate 

for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that 

notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

1. REPORT DATE (DD–MM–YYYY)  

22-03-2012 
2. REPORT TYPE  

Master’s Thesis 
3. DATES COVERED (From — To) 

Aug 2010 – Mar 2012 

4. TITLE AND SUBTITLE  

Development of a Star Tracker-Based Reference System 
for Accurate Attitude Determination of a Simulated 
Spacecraft 

5a. CONTRACT NUMBER  

5b. GRANT NUMBER  

5c. PROGRAM ELEMENT NUMBER  

6.  AUTHOR(S) 

Padro, Jorge G., Capt, USAF 

 

5d. PROJECT NUMBER  
 

5e. TASK NUMBER  

5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  

Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/ENY) 
2950 Hobson Way  
WPAFB OH 45433-7765  

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

AFIT/GAE/ENY/12-M32 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  

Air Force Research Laboratory, Space Vehicles Directorate 
Dr. Frederick A. Leve, Fred.Leve@kirtland.af.mil 
3550 Aberdeen Ave SE 
Bldg 472 Rm 228 
Kirtland AFB, NM, 87117 
(505) 853-5764 
 

10. SPONSOR/MONITOR’S ACRONYM(S)  
AFRL/RVSV 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  

 

12. DISTRIBUTION / AVAILABILITY STATEMENT  

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED  

13. SUPPLEMENTARY NOTES      This material is declared a work of the U.S. Government and is not subject to 
copyright protection in the United States. 

14. ABSTRACT  

 
The goal of this research effort is to investigate the analysis, design, integration, testing, and validation of a 
complete star tracker and star field simulator system concept for AFIT's satellite simulator, SimSat.  Previous 
research has shown that while laboratory-based satellite simulators benefit from star trackers, the approach of 
designing the star field can contribute significant error if the star field is generated on a flat surface.  To facilitate a 
star pattern that better represents a celestial sky, a partially hemispherical dome surface is suspended above 
SimSat and populated with a system of light emitting diodes of various intensities and angles of separation.  Test 
results show that the spherical star pattern surface is effective in minimizing the effects of parallax when imaging in 
a finite conjugate mode and that more reliable attitude information within 1 degree of accuracy can be attained.  
The added capability to research star pattern recognition and attitude determination algorithms in the future is also 
significant. 
 
 
 
 
 
 
 
 
 

 
15. SUBJECT TERMS 

star tracker, attitude determination, spacecraft, simulator 

16. SECURITY CLASSIFICATION OF:  17. LIMITATION 
OF ABSTRACT  
 

UU 

 

18. NUMBER 
OF PAGES  

 
178 

19a. NAME OF RESPONSIBLE PERSON 
Dr. Eric D. Swenson 

a. 
REPORT 

 

U 

b. 
ABSTRACT 

 

U 

c. THIS 
PAGE 

 

U 

19b. TELEPHONE NUMBER (Include Area Code) 
(937)255-3636, ext 7479 

Email. eric.swenson@afit.edu 

 
Standard Form 298 (Rev. 8–98)  
Prescribed by ANSI Std. Z39.18  


	Front Cover
	Title Page
	Approval Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Problem Statement
	Research Objectives
	Methodology
	Preview

	Background
	Spacecraft Attitude Determination
	Spacecraft Dynamics
	Reference Frames
	Rotation Matrices
	Quaternions

	Star Tracker Operation
	Technical Characteristics
	Accuracy
	Ideal Pinhole Camera
	Vector Mapping

	Star Pattern Recognition Algorithm
	Overview
	Angle Algorithm
	Mapping
	Error Estimation
	The Direct Match Test
	Star and Pair Catalogs
	Star Pattern Recognition Algorithm Summary

	Attitude Determination Algorithm
	Overview
	QUEST Algorithm
	Attitude Determination Algorithm Summary

	Laboratory Testing
	Satellite Simulators
	AFIT SimSat
	NPS TAS-2

	Summary

	Methodology
	Introduction
	Key Requirements
	SimSat Star Camera and Lens System
	LED Development
	LED Preliminary Studies
	LED Controller
	Final LED Sub-System Concept

	Star Field Surface Development
	Flat Surface Analysis
	Spherical Surface Analysis
	Dome Specification and Production
	Dome Installation and Measurement

	Matlab Algorithm
	Configuration
	Common Functions
	Calibration
	Cataloging
	Pattern Recognition
	Attitude Determination

	System Validation
	LED Testing
	Dome Surface Testing
	Algorithm Testing

	Summary

	Results and Analysis
	Introduction
	Test 1 Results
	Test 2 Results
	Test 3 Results
	Test 3 Calibration
	Test 3 Star Pattern Recognition and Attitude Determination

	Summary

	Conclusion and Recommendations
	Conclusion
	Recommendations for Future Development
	Star Representation Improvements
	Star Field Improvements
	Algorithm Improvements


	Supplemental Results Figures
	Test 1 Results
	Test 2 Results
	Test 3 Results

	Bibliography
	Vita
	SF 298

